
Noname manuscript No.
(will be inserted by the editor)

Finite-Sum Smooth Optimization with SARAH

Lam M. Nguyen∗ · Marten van Dijk · Dzung T.
Phan · Phuong Ha Nguyen · Tsui-Wei Weng ·
Jayant R. Kalagnanam

Received: date / Accepted: date

Abstract We introduce NC-SARAH for non-convex optimization as a practical mod-
ified version of the original SARAH algorithm that was developed for convex opti-
mization. NC-SARAH is the first to achieve two crucial performance properties at
the same time – allowing flexible minibatch sizes and large step sizes to achieve fast
convergence in practice as verified by experiments. NC-SARAH has a close to op-
timal asymptotic convergence rate equal to existing prior variants of SARAH called
SPIDER and SpiderBoost that either use an order of magnitude smaller step size or a
fixed minibatch size. For convex optimization, we propose SARAH++ with sublinear
convergence for general convex and linear convergence for strongly convex prob-
lems; and we provide a practical version for which numerical experiments on various
datasets show an improved performance.

Lam M. Nguyen, Dzung T. Phan, Jayant R. Kalagnanam
IBM Research, Thomas J. Watson Research Center, Yorktown Heights, NY, USA
E-mail: LamNguyen.MLTD@ibm.com, phandu@us.ibm.com, jayant@us.ibm.com

Marten van Dijk
CWI, Computer Security Group, Amsterdam, The Netherlands
E-mail: mevd@cwi.nl

Phuong Ha Nguyen
eBay Inc., San Jose, CA, USA
E-mail: phuongha.ntu@gmail.com

Tsui-Wei Weng
University of California San Diego, La Jolla, CA, USA
E-mail: lweng@ucsd.edu
∗ Corresponding author

2 Lam M. Nguyen∗ et al.

1 Introduction

We are interested in solving the finite-sum minimization problem

min
w∈Rd

{
F (w) =

1

n

n∑
i=1

fi(w)

}
, (1)

where each fi, i ∈ [n]
def
= {1, . . . , n}, has a Lipschitz continuous gradient. Through-

out the paper, we consider the case where F has a finite lower bound F ∗. We would
like to attain an ε-accurate solution satisfying E[‖∇F (w̃)‖2] ≤ ε for the outputted
approximation w̃.

Problems of form (1) cover a wide range of convex and non-convex problems in
machine learning applications including but not limited to logistic regression, neural
networks, multi-kernel learning, etc. In many of these applications, the number of
component functions n is very large, which makes the classical Gradient Descent
(GD) method less efficient since it requires to compute a full gradient many times.
Stochastic Gradient Descent (SGD), originally proposed by [24], has been widely
used to solve (1) thanks to its scalability and efficiency in dealing with large-scale
problems. SGD and its variants have gained a lot of attention in the machine learning
community (see e.g. [7,10,4,17,20]). In recent years, a large number of improved
variants of stochastic gradient algorithms called variance reduction methods have
been proposed to obtain better computational cost compared to GD, in particular,
SAG/SAGA [26,6], SDCA [27], MISO [15], SVRG/S2GD [9,11], SARAH [18],
etc. These methods were first analyzed for strongly convex problems of form (1).
Due to recent interest in deep neural networks, non-convex problems of form (1) have
been studied and analyzed by considering a number of different approaches including
many variants of variance reduction techniques (see e.g. [23,12,1,2,8], etc.)

SARAH is the variance reduction algorithm which was originally proposed in
[18] in the convex case. In this paper, we introduce a modification to SARAH in
Algorithm 1, called NC-SARAH, for the non-convex case. SARAH’s as well as NC-
SARAH’s iterations are divided into an outer loop where a full gradient is computed
and an inner loop where only one stochastic gradient is computed. We use upper
index (s) to indicate the s-th outer loop and lower index t to indicate the t-th iteration
in the inner loop. The key update rule, which is called the SARAH update [18] for
the inner loop, is

v
(s)
t = ∇fit(w

(s)
t)−∇fit(w

(s)
t−1) + v

(s)
t−1, (2)

where it is chosen uniformly at random in [n]. The computed v(s)t is used to update
w

(s)
t+1 = w

(s)
t − ηv

(s)
t . In NC-SARAH, after m iterations in the inner loop, the outer

loop remembers the last computed w(s)
m+1 and starts its loop anew – first with a full

gradient computation before again entering the inner loop with updates (2). Instead
of remembering w̃s = w

(s)
m+1 for the next outer loop, the original SARAH algorithm

in [18] uses w̃s = w
(s)
t with t chosen uniformly at random from {0, 1, . . . ,m}; the

authors of [18] chose to do this in order to being able to analyze the convergence rate
for a single outer loop.

Finite-Sum Smooth Optimization with SARAH 3

Algorithm 1 NC-SARAH
Parameters: the learning rate η > 0, the inner loop size m, and the outer loop size S
Initialize: w̃0

Iterate:
for s = 1, 2, . . . , S do
w

(s)
0 = w̃s−1

v
(s)
0 = 1

n

∑n
i=1∇fi(w

(s)
0)

w
(s)
1 = w

(s)
0 − ηv(s)0

Iterate:
for t = 1, . . . ,m do

Sample it uniformly at random from [n]

v
(s)
t = ∇fit (w

(s)
t)−∇fit (w

(s)
t−1) + v

(s)
t−1

w
(s)
t+1 = w

(s)
t − ηv(s)t

end for
Set w̃s = w

(s)
m+1

end for

We notice that in [19] SARAH was extended to deal with mini-batch updates
by, instead of choosing a single sample it in (2), we choose b samples uniformly at
random from [n] for updating vt in the inner loop. This gives a SARAH update rule
for mini-batches:

v
(s)
t =

1

b

∑
i∈It

[∇fi(w(s)
t)−∇fi(w(s)

t−1)] + v
(s)
t−1, (3)

where we choose a mini-batch It ⊆ [n] of size b uniformly at random at each iteration
of the inner loop. NC-SARAH in Algorithm 1 is for the single batch case and if we
replace the update rule in the inner loop by (3) we get NC-SARAH for the mini-batch
case. SARAH in [19] for mini-batches was analyzed for the non-convex case for only
a single outer loop giving a total complexity of O(n+ L2

ε2), where L is the Lipschitz
constant of the gradients. With our modification to w̃s in NC-SARAH we are able to
provide a “multiple outer loop” analysis for the non-convex case for single batches
and mini-batches.

SPIDER [8], a recent variant of SARAH for the non-convex case, is the first work
that achieves the best known total1 complexity ofO (n+ L

√
n/ε) for the non-convex

case. Its complexity matches the lower-bound worst case complexity of O (
√
n/ε)

in [8] up to a constant factor when n ≤ O(ε−2). Another variant of SARAH [28]
provides an improved version of SPIDER called SpiderBoost which allows a larger
learning rate but restricting on the choice of the mini-batch size. Both SPIDER and
SpiderBoost use the SARAH update rule (2) as originally proposed in [18] and use
the mini-batch version of the update rule (3) in [19]. SPIDER and SpiderBoost do
not divide into an outer loop and inner loop like SARAH, although SPIDER and
SpiderBoost do similarly perform a full gradient update after a certain fixed number
of iterations.

The drawback of SPIDER is the utilization of a small learning rate which depends
on ε, but it offers flexibility in the range of mini-batch sizes for the inner loop [1,

√
n].

1 Measured as the total number of gradient computations needed to achieve an ε-accurate solution.

4 Lam M. Nguyen∗ et al.

SpiderBoost has a larger stepsize independent on ε, which gives a big practical im-
provement for solving real applications. However, one needs to fix the mini-batch
size of

√
n for SpiderBoost, which limits the design space to such mini-batch sizes.

Besides achieving the state-of-the-art asymptotic total complexity O (n+ L
√
n/ε)

like SPIDER and SpiderBoost, our proposed variant of NC-SARAH mitigates at the
same time both the learning rate limitation of SPIDER and the mini-batch limitation
of SpiderBoost. In fact our learning rate is higher than those of SPIDER as well as
SpiderBoost, and our mini-batch size for the inner loop can be freely selected from
[1,
√
n] (see Section 3 for more detail).

Contributions: We summarize our key contributions as follows.

1. Smooth Non-Convex.
– We provide a new convergence analysis for a new variant of the SARAH al-

gorithm (NC-SARAH) for non-convex problems. We show that NC-SARAH
achieves the state-of-the-art total complexity2 for finding a first-order station-
ary point in the non-convex case based on only the average smooth assump-
tion; see Theorem 1 and Corollary 2 for the single batch case and Theorem 2
and Corollary 3 for the mini-batch case. We notice that our convergence anal-
ysis framework is simple and intuitive (Lemma 2 and Theorem 1).

– We rigorously show that, given a fixed mini-batch size for the inner loop and
given a fixed number of inner loop iterations, NC-SARAH can adopt an or-
der of magnitude larger learning rate compared to SPIDER (Corollary 5) and
a strictly larger learning rate compared to SpiderBoost (Corollary 6). Nu-
merical experiments show how NC-SARAH outperforms both SPIDER and
SpiderBoost (Section 5.1).

– NC-SARAH allows a range of mini-batch sizes for the inner loop similar to
SPIDER (Section 3). In this sense NC-SARAH adopts the advantage of SPI-
DER and, unlike SpiderBoost, does not need to give up on the flexibility of
choosing mini-batch sizes in order to achieve practical large learning rates.
Numerical experiments show that a flexible mini-batch size improves perfor-
mance – a mini-batch size of about n0.1−n0.2 rather than the fixed mini-batch
size of n0.5 in SpiderBoost leads to best performance in our case study (Sec-
tion 5.1).

2. Smooth Convex. In order to complete the picture, we study SARAH+ [18] which
was designed as a variant of SARAH for convex optimization. SARAH+ pro-
vides a stopping criteria for the inner loop and shows the efficiency over SARAH.
SARAH+ suggests to empirically choose parameter without theoretical guaran-
tee. We propose a novel variant of SARAH+ called SARAH++. Here, we study
the iteration complexity measured by the total number of iterations (which counts
one full gradient computation as adding one iteration to the complexity) – and
leave an analysis of the total complexity as an open problem. For SARAH++,
we show a sublinear convergence rate in the general convex case (Theorem 3)
and a linear convergence rate in the strongly convex case (Theorem 4). SARAH
itself may already lead to good convergence and there may no need to introduce

2 State-of-the-art complexity matches the lower-bound worst case complexity of Ω
(
n+
√
n/ε
)

in
[13].

Finite-Sum Smooth Optimization with SARAH 5

SARAH++; in numerical experiments we show the advantage of SARAH++ over
SARAH. We further propose a practical version called SARAH Adaptive which
improves the performance of SARAH and SARAH++ for convex problems – nu-
merical experiments on various data sets show good overall performance.

3. Generalized Gradient Descent. For the convergence analysis of NC-SARAH
for the non-convex case and SARAH++ for the convex case, we show that the
analysis generalizes the total complexity of Gradient Descent (Remarks 1, 2, and
3), i.e., the analysis reproduces known total complexity results of GD. Up to the
best of our knowledge, this is the first variance reduction method having this
property.

1.1 Related Work

Table 1: Comparison of results on the total complexity for smooth non-convex optimization

Method Total Complexity Additional assumption

GD [16] O
(
n
ε

)
None

SVRG [23] O
(
n+ n2/3

ε

)
None

SCSG [12] O
((

σ
ε ∧ n

)
+ 1

ε

(
σ
ε ∧ n

)2/3) Bounded variance

O
(
n+ n2/3

ε

)
None (σ →∞)

SNVRG [29] O
(
log3

(
σ
ε ∧ n

) [(
σ
ε ∧ n

)
+ 1

ε

(
σ
ε ∧ n

)1/2]) Bounded variance

O
(
log3 (n)

(
n+

√
n
ε

))
None (σ →∞)

SPIDER [8] O
(
n+

√
n
ε

)
None

SpiderBoost [28] O
(
n+

√
n
ε

)
None

NC-SARAH (this paper) O
(
n+

√
n
ε

)
None

Table 13 shows the comparison of results on the total complexity for smooth non-
convex optimization. (a) Each of the complexities in Table 1 also depends on the
Lipschitz constant L, however, since we consider smooth optimization, it is custom
to assume/design L = O(1) and we therefore ignore the dependency on L in the
complexity results. (b) Although many algorithms have appeared during the past few
years, we only compare algorithms having a convergence result which only supposes
the smooth assumption. (c) Among algorithms with convergence results that only
suppose the smooth assumption, Table 1 only mentions recent state-of-the-art results.
(d) Although the bounded variance assumption E[‖∇fi(w)−∇F (w)‖2] ≤ σ2 is ac-
ceptable in many existing literature, this additional assumption limits the applicability
of these convergence results since it adds dependence on σ which can be arbitrarily
large. For fair comparison with convergence analysis without the bounded variance
assumption, σ must be set to go to infinity – and this is what is mentioned in Table 1.
As an example, from Table 1 we observe that SCSG has an advantage over SVRG
only if σ = O(1) but, theoretically, by removing the bounded variance assumption,
it has the same total complexity as SVRG if σ →∞.

3 a ∧ b is defined as min{a, b} and a ∨ b is defined as max{a, b}

6 Lam M. Nguyen∗ et al.

Table 2: Comparison properties among SPIDER, SpiderBoost, and NC-SARAH

Method Complexity Mini-batch size b and Number of inner
loop iterationsm Learning Rate

SPIDER [8] O
(
n+

√
n
ε

)
b = n1/2−γ andm = n1/2+γ

γ ∈ [0, 1/2]
Dependent on ε

SpiderBoost [28] O
(
n+

√
n
ε

)
b = n1/2 andm = n1/2 Independent on ε

NC-SARAH
(this paper) O

(
n+

√
n
ε

)
b = n1/2−γ andm = n1/2+γ

γ ∈ [0, 1/2]
Independent on ε

From Table 1, we observe that NC-SARAH, SPIDER and SpiderBoost achieve
the total complexity of O (n+

√
n/ε) and dominate the complexity of all other al-

gorithms. Indeed, its complexity matches the lower-bound worst case complexity of
Ω (n+

√
n/ε) in [13]. We note that SPIDER and SpiderBoost can easily be rewrit-

ten by using an inner loop and outer loop algorithm description similar to SARAH
(see also Algorithm 1). For consistency, we will use the term “inner loop” to indi-
cate where the SARAH update rule is used in these three algorithms. The advantages
of NC-SARAH over SPIDER and SpiderBoost, respectively, are shown in Table 2.
Both SPIDER and NC-SARAH allow a mini-batch size for the update rule in the
inner loop in b ∈ [1,

√
n].4 SpiderBoost is restricted in choosing a mini-batch size

b =
√
n for the inner loop while NC-SARAH like SPIDER has more choices. Our

experimental results confirm that the choice of b =
√
n and m =

√
n of SpiderBoost

is not the best choice (see Section 5.1). NC-SARAH outperforms SPIDER in that
it can choose a much larger learning rate for the same mini-batch size b and num-
ber of inner loop iterations m. This is because the choice of NC-SARAH’s learning
rate does not depend on ε while SPIDER does; the smaller learning rate of SPIDER
makes it converge slowly to small ε-accurate solution. Even though the learning rate
of SpiderBoost also does not depend on ε, we show that for the same mini-batch size
b =
√
n a number of inner loop iterations m =

√
n NC-SARAH can still choose a

larger learning rate.

The more general settings have been considered in the existing literature (e.g.,
ProxSARAH [22]). However, by taking the benefit of our special case, we are able
to show some advantages of our NC-SARAH as follows. We can quantify and show
that NC-SARAH has clear advantages over SPIDER and SpiderBoost in both theory
(see Section 3) and practice (see Section 5.1). It is currently unclear how ProxSARAH
could show these results without taking the benefit of the special setting. More impor-
tantly, in the convergence analysis of NC-SARAH for the non-convex case, we show
that our analysis generalizes the total complexity of Gradient Descent (Remark 1).
Although GD is a special case of SVRG and SARAH when there is no inner loop,
we are not aware of any work that can show that the complexity of variance reduction
methods reduces to GD. Up to the best of our knowledge, this problem has been a
standing open question since 2012. Using the proof techniques in this paper, we are
now able to answer this question affirmatively. Our contribution has provided a rigor-
ous relation between GD and variance reduction methods. Therefore, we believe, our

4 According to our analysis, NC-SARAH also has the option to choose a mini-batch size b ∈ (
√
n, n],

but for such a choice we cannot attain a total complexity ofO
(√

n
ε
∨ n
)

.

Finite-Sum Smooth Optimization with SARAH 7

technical results manage to build a bridge and connect the existing knowledge from
GD - a well known method to the new variance reduction technique.

For convex problems, we derive the convergence results of our proposed method
SARAH++ in terms of the iteration complexity. It is not capable to compare our
complexity results with the SVRG-type algorithms (see e.g. [3,23,14]) since they
use the complexity based on the total number of component gradient evaluations.
In Section 5.2, our experiments show the improved performance of SARAH++ over
SARAH in the convex cases. Moreover, we have also proposed a new variant called
SARAH Adaptive which further improves the performance as show in Section 5.3.
Therefore, we believe that the total complexity for SARAH++ and the convergence
analysis for SARAH Adaptive are desired and potential for future research.

1.2 Paper Organization

The rest of the paper is organized as follows. Section 2 gives the convergence anal-
ysis of NC-SARAH in the non-convex case for both single batch and mini-batch
cases. Section 3 shows the advantages of NC-SARAH over SPIDER and Spider-
Boost in detail. In Section 4, we provide the convergence analysis of SARAH++
in the convex case and its iteration complexity. Numerical experiments are given in
Section 5 to show the good performance of NC-SARAH over SPIDER and Spider-
Boost (Section 5.1) and SARAH++ and SARAH Adaptive over the original SARAH
(Sections 5.2 and 5.3). We conclude the paper and discuss future work in Section 6.

2 Non-Convex Case: Convergence Analysis of NC-SARAH

We will analyze NC-SARAH for smooth non-convex optimization, i.e., we study (1)
with the following average smooth assumption (see e.g. [8]).

Assumption 1 (average-L-smooth) The objective function F is L-average-smooth,
i.e., there exists a constant L > 0 such that, ∀w,w′ ∈ Rd,

1

n

n∑
i=1

‖∇fi(w)−∇fi(w′)‖2 ≤ L2‖w − w′‖2. (4)

We notice that, the above assumption is weaker than the assumption onL-smoothness
of each fi, i = 1, . . . , n. Throughout this paper for non-convex results, we only con-
sider Assumption 1 and no additional assumptions are needed. We stress that our
convergence analysis only relies on the above average smooth assumption without
bounded variance assumption (as required in [12,29]). We note that Assumption 1 im-
plies that F isL-smooth, that is, there exists a constantL > 0 such that, ∀w,w′ ∈ Rd,
‖∇F (w)−∇F (w′)‖ ≤ L‖w − w′‖. By Theorem 2.1.5 in [16], we obtain

F (w) ≤ F (w′) +∇F (w′)T (w − w′) +
L

2
‖w − w′‖2. (5)

8 Lam M. Nguyen∗ et al.

2.1 Single batch case

We start analyzing NC-SARAH (Algorithm 1) for the case where we choose a sin-
gle sample it uniformly at random from [n] in the inner loop. We first provide the
following key lemmas.

Lemma 1 (Lemma 2 in [18] (or in [19])) Consider v(s)t defined by (2) (or (3)) in
SARAH (Algorithm 1) for any s ≥ 1. Then for any t ≥ 1,

E[‖∇F (w
(s)
t)− v(s)t ‖2] =

t∑
j=1

E[‖v(s)j − v
(s)
j−1‖

2]−
t∑

j=1

E[‖∇F (w
(s)
j)−∇F (w

(s)
j−1)‖2].

(6)

Lemma 2 Suppose that Assumption 1 holds. Consider a single outer loop iteration
in NC-SARAH (Algorithm 1) with η ≤ 2

L(
√
1+4m+1)

. Then, for any s ≥ 1, we have

E[F (w
(s)
m+1)] ≤ E[F (w

(s)
0)]− η

2

m∑
t=0

E[‖∇F (w
(s)
t)‖2]. (7)

Proof We use some parts of the proof in [19]. By Assumption 1 and w(s)
t+1 = w

(s)
t −

ηv
(s)
t , for any s ≥ 1, we have

E[F (w
(s)
t+1)]

(5)
≤ E[F (w

(s)
t)]− ηE[∇F (w

(s)
t)T v

(s)
t] +

Lη2

2
E[‖v(s)t ‖2]

= E[F (w
(s)
t)]− η

2
E[‖∇F (w

(s)
t)‖2] +

η

2
E[‖∇F (w

(s)
t)− v(s)t ‖2]

−
(
η

2
− Lη2

2

)
E[‖v(s)t ‖2], (8)

where the last equality follows from the fact aT b = 1
2

[
‖a‖2 + ‖b‖2 − ‖a− b‖2

]
,

for any a, b ∈ Rd. By summing over t = 0, . . . ,m, we have

E[F (w
(s)
m+1)] ≤ E[F (w

(s)
0)]− η

2

m∑
t=0

E[‖∇F (w
(s)
t)‖2]

+
η

2

(
m∑
t=0

E[‖∇F (w
(s)
t)− v(s)t ‖2]− (1− Lη)

m∑
t=0

E[‖v(s)t ‖2]

)
.

(9)

Now, we would like to determine η such that the expression in (9)

m∑
t=0

E[‖∇F (w
(s)
t)− v(s)t ‖2]− (1− Lη)

m∑
t=0

E[‖v(s)t ‖2] ≤ 0.

Finite-Sum Smooth Optimization with SARAH 9

LetFj = σ(w0, w1, . . . , wj) be the σ-algebra generated byw0, w1, . . . , wj . Note
that Fj also contains all information of v0, . . . , vj−1. We have

E[‖v(s)j − v
(s)
j−1‖

2|Fj]
(2)
= E[‖∇fij (w

(s)
j)−∇fij (w

(s)
j−1)‖2|Fj]

(4)
≤ L2‖w(s)

j − w
(s)
j−1‖

2 = L2η2‖v(s)j−1‖
2, j ≥ 1.

Taking the expectations to both sides yields

E[‖v(s)j − v
(s)
j−1‖

2] ≤ L2η2E[‖v(s)j−1‖
2]. (10)

Hence, by Lemma 1, we have

E[‖∇F (w
(s)
t)− v(s)t ‖2] ≤

t∑
j=1

E[‖v(s)j − v
(s)
j−1‖

2]
(10)
≤ L2η2

t∑
j=1

E[‖v(s)j−1‖
2].

Note that ‖∇F (w
(s)
0) − v(s)0 ‖2 = 0. By summing over t = 0, . . . ,m (m ≥ 1), we

have
m∑
t=0

E‖∇F (w
(s)
t)− v(s)t ‖2 ≤ L2η2

[
mE‖v(s)0 ‖2 + (m− 1)E‖v(s)1 ‖2 + · · ·+ E‖v(s)m−1‖2

]
.

By choosing η ≤ 2

L(
√
1+4m+1)

, we have

m∑
t=0

E[‖∇F (w
(s)
t)− v(s)t ‖2]− (1− Lη)

m∑
t=0

E[‖v(s)t ‖2]

≤ L2η2
[
mE‖v(s)0 ‖2 + (m− 1)E‖v(s)1 ‖2 + · · ·+ E‖v(s)m−1‖2

]
− (1− Lη)

[
E‖v(s)0 ‖2 + E‖v(s)1 ‖2 + · · ·+ E‖v(s)m ‖2

]
≤
[
L2η2m− (1− Lη)

] m∑
t=1

E[‖v(s)t−1‖2] ≤ 0, (11)

since η = 2

L(
√
1+4m+1)

is a root of equation L2η2m − (1 − Lη) = 0. Therefore,

with η ≤ 2
L(
√
1+4m+1)

, we have

E[F (w
(s)
m+1)] ≤ E[F (w

(s)
0)]− η

2

m∑
t=0

E[‖∇F (w
(s)
t)‖2].

This completes the proof. ut
The above result is for a single outer loop iteration of NC-SARAH, which in-

cludes a full gradient step together with the inner loop. Since the outer loop it-
eration concludes with w̃s = w

(s)
m+1, and w̃s−1 = w

(s)
0 , we have E[F (w̃s)] ≤

E[F (w̃s−1)]− η
2

∑m
t=0 E[‖∇F (w

(s)
t)‖2]. Summing over 1 ≤ s ≤ S gives

E[F (w̃S)] ≤ E[F (w̃0)]− η

2

S∑
s=1

m∑
t=0

E[‖∇F (w
(s)
t)‖2]. (12)

This proves our main result:

10 Lam M. Nguyen∗ et al.

Theorem 1 Suppose that Assumption 1 holds. Consider NC-SARAH (Algorithm 1)
with η ≤ 2

L(
√
1+4m+1)

. Then, for any given w̃0, we have

1

(m+ 1)S

S∑
s=1

m∑
t=0

E[‖∇F (w
(s)
t)‖2] ≤ 2

η[(m+ 1)S]
[F (w̃0)− F ∗],

where F ∗ is any lower bound of F , and w(s)
t is the solution at the t-th iteration in the

s-th outer loop.

The proof easily follows from (12) sinceF ∗ is a lower bound ofF (that is, E[F (w̃S)] ≥
F ∗). We note that the term 1

(m+1)S

∑S
s=1

∑m
t=0 E[‖∇F (w

(s)
t)‖2] is simply the aver-

age of the expectation of the squared norms of the gradients of all the iteration results
generated by NC-SARAH. For non-convex problems, our goal is to achieve

1

(m+ 1)S

S∑
s=1

m∑
t=0

E[‖∇F (w
(s)
t)‖2] ≤ ε. (13)

We note that, for simplicity, if w̄s is chosen uniformly at random from all the itera-
tions generated by NC-SARAH, we are able to have accuracy E[‖∇F (w̄s)‖2] ≤ ε.
From Theorem 1 with η = O(1/

√
m+ 1) we infer that (13) can be realized for

S = O(1
ε
√
m+1

∨ 1). The total complexity of NC-SARAH is equal to S(n + 2m)

which proves the following result.

Corollary 1 Suppose that Assumption 1 holds. Let us consider NC-SARAH (Algo-
rithm 1) with η = 2

L(
√
1+4m+1)

where m is the inner loop size. Then, in order to

achieve an ε-accurate solution, the total complexity isO
([(

n+2m√
m+1

)
1
ε

]
∨ [n+ 2m]

)
.

Proof To achieve 1
(m+1)S

∑S
s=1

∑m
t=0 E[‖∇F (w

(s)
t)‖2] ≤ ε, it is sufficient to prove

2

η[(m+ 1)S]
[F (w̃0)− F ∗] ≤ ε. (14)

Notice that η
√
m+ 1 = 2

L

√
m+1√

1+4m+1
≤ 2

L . Hence, in order to achieve (14), we
need

S ≥ 2

η[(m+ 1)ε]
[F (w̃0)− F ∗] ≥ L[F (w̃0)− F ∗]

(
√
m+ 1)

1

ε
.

Together with the requirement S ≥ 1, we can choose S = O
([

1√
m+1

· 1ε
]
∨ 1
)

.
Therefore, the total complexity to achieve ε-accurate solution is

(n+ 2m)S = O
([(

n+ 2m√
m+ 1

)
1

ε

]
∨ [n+ 2m]

)
.

This completes the proof. ut

Finite-Sum Smooth Optimization with SARAH 11

The total complexity can be minimized over the inner loop size m. By choosing
m = n, we achieve the minimal total complexity:

Corollary 2 Suppose that Assumption 1 holds. Let us consider NC-SARAH (Algo-
rithm 1) with η = 2

L(
√
1+4m+1)

where m is the inner loop size and chosen equal
to m = n. Then, in order to achieve an ε-accurate solution, the total complexity is
O
(√

n
ε ∨ n

)
.

Remark 1 The total complexity in Corollary 1 covers all choices for the inner loop
size m. For example, in the case of m = 0, NC-SARAH recovers the Gradient De-
scent (GD) algorithm which has total complexity O

(
n
ε

)
. Theorem 1 for m = 0 also

recovers the requirement on the learning rate for GD, which is η ≤ 1
L .

The above results explain the relationship between NC-SARAH and GD and ex-
plain the advantages of the inner loop and outer loop of NC-SARAH. NC-SARAH
becomes more beneficial in ML applications where n is large.

2.2 Mini-batch case

The above results can be extended to the mini-batch case where instead of (2) the
update rule (3) is used as explained in the introduction.

Theorem 2 Suppose that Assumption 1 holds. Consider NC-SARAH (Algorithm 1)
by replacing the update of vt in the inner loop by (3) with

η ≤ 2

L

(√
1 + 4m

b

(
n−b
n−1

)
+ 1

) . (15)

Then, for any given w̃0, we have

1

(m+ 1)S

S∑
s=1

m∑
t=0

E[‖∇F (w
(s)
t)‖2] ≤ 2

η[(m+ 1)S]
[F (w̃0)− F ∗],

where F ∗ is any lower bound of F , and w(s)
t is the solution at the t-th iteration in the

s-th outer loop.

Proof Consider v(s)t defined by (3) in NC-SARAH (Algorithm 1) for any s ≥ 1.
Then by Lemma 2, for any t ≥ 1,

E[‖∇F (w
(s)
t)− v(s)t ‖2] =

t∑
j=1

E[‖v(s)j − v
(s)
j−1‖

2]−
t∑

j=1

E[‖∇F (w
(s)
j)−∇F (w

(s)
j−1)‖2].

(16)

Following the proof of Lemma 2, we would like to determine η such that the
expression in (9)

m∑
t=0

E[‖∇F (w
(s)
t)− v(s)t ‖2]− (1− Lη)

m∑
t=0

E[‖v(s)t ‖2] ≤ 0.

12 Lam M. Nguyen∗ et al.

Let

ξt = ∇ft(w(s)
j)−∇ft(w(s)

j−1). (17)

LetFj = σ(w
(s)
0 , I1, I2, . . . , Ij−1) be the σ-algebra generated byw(s)

0 , I1, I2, . . . , Ij−1;
F0 = F1 = σ(w

(s)
0). Note that Fj also contains all the information of w(s)

0 , . . . , w
(s)
j

as well as v(s)0 , . . . , v
(s)
j−1. We have

E[‖v(s)j − v
(s)
j−1‖

2|Fj]− ‖∇F (w
(s)
j)−∇F (w

(s)
j−1)‖2

(3)
= E

[∥∥∥1

b

∑
i∈Ij

[∇fi(w(s)
j)−∇fi(w(s)

j−1)]
∥∥∥2∣∣∣Fj]− ∥∥∥ 1

n

n∑
i=1

[∇fi(w(s)
j)−∇fi(w(s)

j−1)]
∥∥∥2

(17)
= E

[∥∥∥1

b

∑
i∈Ij

ξi

∥∥∥2∣∣∣Fj]− ∥∥∥ 1

n

n∑
i=1

ξi

∥∥∥2 =
1

b2
E
[∑
i∈Ij

∑
k∈Ij

ξTi ξk

∣∣∣Fj]− 1

n2

n∑
i=1

n∑
k=1

ξTi ξk

=
1

b2
E
[∑
i 6=k∈Ij

ξTi ξk +
∑
i∈Ij

ξTi ξi

∣∣∣Fj]− 1

n2

n∑
i=1

n∑
k=1

ξTi ξk

=
1

b2

[b
n

(b− 1)

(n− 1)

∑
i 6=k

ξTi ξk +
b

n

n∑
i=1

ξTi ξi

]
− 1

n2

n∑
i=1

n∑
k=1

ξTi ξk

=
1

b2

[b
n

(b− 1)

(n− 1)

n∑
i=1

n∑
k=1

ξTi ξk +

(
b

n
− b

n

(b− 1)

(n− 1)

) n∑
i=1

ξTi ξi

]
− 1

n2

n∑
i=1

n∑
k=1

ξTi ξk

=
1

bn

[((b− 1)

(n− 1)
− b

n

) n∑
i=1

n∑
k=1

ξTi ξk +
(n− b)
(n− 1)

n∑
i=1

ξTi ξi

]
=

1

bn

(
n− b
n− 1

)[
− 1

n

n∑
i=1

n∑
k=1

ξTi ξk +

n∑
i=1

ξTi ξi

]
=

1

bn

(
n− b
n− 1

)[
− n

∥∥∥ 1

n

n∑
i=1

ξi

∥∥∥2 +

n∑
i=1

‖ξi‖2
]

≤ 1

b

(
n− b
n− 1

)
1

n

n∑
i=1

‖ξi‖2

(17)
=

1

b

(
n− b
n− 1

)
1

n

n∑
i=1

‖∇fi(w(s)
j)−∇fi(w(s)

j−1)‖2
(4)
≤ 1

b

(
n− b
n− 1

)
L2η2‖v(s)j−1‖

2.

Hence, by taking expectation, we have

E[‖v(s)j − v
(s)
j−1‖

2]− E[‖∇F (w
(s)
j)−∇F (w

(s)
j−1)‖2] ≤ 1

b

(
n− b
n− 1

)
L2η2E[‖v(s)j−1‖

2].

By (16), for t ≥ 1,

E[‖∇F (w
(s)
t)− v(s)t ‖2] =

t∑
j=1

E[‖v(s)j − v
(s)
j−1‖

2]−
t∑

j=1

E[‖∇F (w
(s)
j)−∇F (w

(s)
j−1)‖2]

Finite-Sum Smooth Optimization with SARAH 13

≤ 1

b

(
n− b
n− 1

)
L2η2

t∑
j=1

E[‖v(s)j−1‖
2].

Note that ‖∇F (w
(s)
0) − v(s)0 ‖2 = 0. By summing over t = 0, . . . ,m (m ≥ 1),

we have

m∑
t=0

E‖∇F (w
(s)
t)− v(s)t ‖2

≤ 1

b

(
n− b
n− 1

)
L2η2

[
mE‖v(s)0 ‖2 + (m− 1)E‖v(s)1 ‖2 + · · ·+ E‖v(s)m−1‖2

]
.

By choosing η ≤ 2

L

(√
1+ 4m

b (n−bn−1)+1

) , we have

m∑
t=0

E[‖∇F (w
(s)
t)− v(s)t ‖2]− (1− Lη)

m∑
t=0

E[‖v(s)t ‖2]

≤ 1

b

(
n− b
n− 1

)
L2η2

[
mE‖v(s)0 ‖2 + (m− 1)E‖v(s)1 ‖2 + · · ·+ E‖v(s)m−1‖2

]
− (1− Lη)

[
E‖v(s)0 ‖2 + E‖v(s)1 ‖2 + · · ·+ E‖v(s)m ‖2

]
≤
[1

b

(
n− b
n− 1

)
L2η2m− (1− Lη)

] m∑
t=1

E[‖v(s)t−1‖2] ≤ 0, (18)

since η = 2

L

(√
1+ 4m

b (n−bn−1)+1

) is a root of equation 1
b

(
n−b
n−1

)
L2η2m − (1 −

Lη) = 0. Therefore, with η ≤ 2

L

(√
1+ 4m

b (n−bn−1)+1

) , we have

E[F (w
(s)
m+1)] ≤ E[F (w

(s)
0)]− η

2

m∑
t=0

E[‖∇F (w
(s)
t)‖2].

Following the same derivation of Theorem 1, for any given w̃0, we could achieve
the desired result. ut

We can again derive similar corollaries as was done for Theorem 1.

Corollary 3 For the conditions in Theorem 2 with equality for η in (15), in order to
achieve an ε-accurate solution the total complexity is

O

([(
n+ 2bm

m+ 1

)(√
1 +

4m

b

(
n− b
n− 1

))
1

ε

]
∨ [n+ 2bm]

)
.

14 Lam M. Nguyen∗ et al.

Proof By Theorem 2, let η = 2

L

(√
1+ 4m

b (n−bn−1)+1

) . Hence, we have

1

(m+ 1)S

S∑
s=1

m∑
t=0

E[‖∇F (w
(s)
t)‖2] ≤ 2

η[(m+ 1)S]
[F (w̃0)− F ∗]

=

(√
1 + 4m

b

(
n−b
n−1

)
+ 1

)
(m+ 1)S

L[F (w̃0)− F ∗]

≤

(√
1 + 4m

b

(
n−b
n−1

))
(m+ 1)S

2L[F (w̃0)− F ∗] = ε.

In order to achieve the ε-accurate solution, we need

S =

(√
1 + 4m

b

(
n−b
n−1

))
(m+ 1)ε

2L[F (w̃0)− F ∗] = O


(√

1 + 4m
b

(
n−b
n−1

))
(m+ 1)ε

∨ 1

 ,

since S ≥ 1. Therefore, the total complexity is

(n+ b · 2m)S = O

([(
n+ 2bm

m+ 1

)(√
1 +

4m

b

(
n− b
n− 1

))
1

ε

]
∨ [n+ 2bm]

)
.

This completes the proof. ut

Corollary 4 For the conditions in Corollary 3 with b = n1/2−γ and m = n1/2+γ ,
where 0 ≤ γ ≤ 1/2, in order to achieve an ε-accurate solution the total complexity

is O
(√

n
ε ∨ n

)
.

Proof Let b = nα and m = nβ where 0 ≤ α, β ≤ 1, we have(
n+ 2bm

m+ 1

)√
1 +

4m

b

(
n− b
n− 1

)
=

(
n+ 2nα+β

nβ + 1

)√
1 + 4nβ−α

(
n− nα
n− 1

)
≤ n+ 2nα+β

nβ
2
√

1 + nβ−α.

If β ≥ α, we have

n+ 2nα+β

nβ
2
√

1 + nβ−α ≤ 2
√

2

(
n+ 2nα+β

nβ

)
n(β−α)/2

= 2
√

2(n1−α/2−β/2 + 2nα/2+β/2).

In order to minimize the order of n, we need to choose 1−α/2−β/2 = α/2 +β/2,
which is equivalent to α+β = 1 with β ≥ α. The best option is to choose α+β = 1
with β ≥ 1/2 and 0 ≤ α ≤ 1/2 in order to achieve O(n1/2).

Finite-Sum Smooth Optimization with SARAH 15

If β ≤ α, we have n+2nα+β

nβ
2
√

1 + nβ−α ≤ 2
√

2(n1−β + 2nα). In order to
minimize the order of n, we need to choose 1 − β = α, which is equivalent to
α + β = 1 with β ≤ α. The best option is to choose β = 1/2 and α = 1/2 in order
to achieve O(n1/2).

Therefore, with b = nα and m = nβ where α + β = 1 with β ≥ 1/2 and

0 ≤ α ≤ 1/2, we have
(
n+2bm
m+1

)√
1 + 4m

b

(
n−b
n−1

)
= O(n1/2).

By Corollary 3 with bm = nα+β = n, it implies the total complexity

(n+ b · 2m)S = O
(√

n

ε
∨ n
)
.

Hence, by setting α = 1/2 − γ and β = 1/2 + γ with 0 ≤ γ ≤ 1/2, we obtain the
corollary. ut

Remark 2 The choice of η in Theorem 2 is more general than in Theorem 1. For
b = n and m = m0, for some non-negative integer m0, it recovers the convergence
rate of Gradient Descent with learning rate η ≤ 1

L and total complexity O
(
n
ε

)
(see

Corollary 3).

3 Comparison of NC-SARAH, SPIDER, and SpiderBoost

As shown in the previous section, like SPIDER [8] and SpiderBoost [28], also NC-
SARAH enjoys the same asymptotic total complexity of O (n+

√
n/ε).

In this section, we show practical advantages of NC-SARAH over SPIDER and
SpiderBoost. By using our notation of b and m, the three algorithms have the follow-
ing properties:

– SPIDER: For 0 ≤ γ ≤ 1/2,

b = n1/2−γ , m = n1/2+γ , η
(s)
t = min

{
ε

Lnγ‖v(s)t ‖
,

1

2Lnγ

}
, (19)

where v(s)t is the SARAH update (3), and η(s)t denotes the learning rate of the t-th
iteration in the inner loop of the s-th outer loop.

– SpiderBoost:

b = n1/2 ,m = n1/2 , η =
1

2L
. (20)

– NC-SARAH: For 0 ≤ γ ≤ 1/2,

b = n1/2−γ , m = n1/2+γ , η =
2

L

(√
1 + 4n2γ

(
n−n1/2−γ

n−1

)
+ 1

) . (21)

The following subsections analyze NC-SARAH in comparison to SPIDER and Spi-
derBoost, respectively.

16 Lam M. Nguyen∗ et al.

3.1 NC-SARAH vs SPIDER

NC-SARAH and SPIDER have the same flexibility of choosing mini-batch size b ∈
[1,
√
n]. However, the learning rate of SPIDER can be quite small compared to the

learning rate of NC-SARAH because SPIDER’s learning rate scales linearly with
ε for learning rates ≤ 1

2Lnγ and ε will be small especially when we want a small
ε-accurate solution.

Corollary 5 For the same mini-batch size b for the inner loop and the same number
of inner loop iterations m, the learning rate choice of NC-SARAH is strictly larger
than that of SPIDER when n > 1.

Proof We recall the SPIDER’s setting:

b = n1/2−γ , m = n1/2+γ , η
(s)
t = min

{
ε

Lnγ‖v(s)t ‖
,

1

2Lnγ

}
,

where v(s)t is the SARAH update (3), and η(s)t is the learning rate of the s-outer loop
and t-th iteration in the inner loop; and the NC-SARAH’s setting:

b = n1/2−γ , m = n1/2+γ , η =
2

L

(√
1 + 4n2γ

(
n−n1/2−γ

n−1

)
+ 1

) ,
where 0 ≤ γ ≤ 1/2.

Since η(s)t = min

{
ε

Lnγ‖v(s)t ‖
, 1
2Lnγ

}
≤ 1

2Lnγ . In order to achieve the desired

result, it is sufficient to show that, for 0 ≤ γ ≤ 1/2,

2

L

(√
1 + 4n2γ

(
n−n1/2−γ

n−1

)
+ 1

) >
1

2Lnγ
. (22)

This is equivalent to showing

4nγ >

√
1 + 4n2γ

(
n− n1/2−γ
n− 1

)
+ 1

16n2γ − 8nγ + 1 > 1 + 4n2γ
(
n− n1/2−γ

n− 1

)
4− 2

nγ
>
n− n1/2−γ

n− 1
= 1− n1/2−γ − 1

n− 1
.

The last inequality clearly holds since 4− 2
nγ ≥ 2. Therefore, we obtain (22). ut

Finite-Sum Smooth Optimization with SARAH 17

3.2 NC-SARAH vs SpiderBoost

It is clear that, compared to SpiderBoost with only b =
√
n, NC-SARAH has more

flexibility of choosing mini-batch size b = n1/2−γ for some 0 ≤ γ ≤ 1/2. In order to
compare the learning rate of NC-SARAH and SpiderBoost for the same mini-batch
size, we let γ = 0 in NC-SARAH’s parameter setting; we obtain

b =
√
n , m =

√
n , η =

2

L

(√
1 + 4

(
n−n1/2

n−1

)
+ 1

) .
We have the following corollary.

Corollary 6 For the same mini-batch size b for the inner loop and the same number
of inner loop iterations m, the learning rate choice of NC-SARAH is at least a factor
4/(
√

5 + 1) ≈ 1.236 larger than that of SpiderBoost when n > 1.

Proof We need to choose γ = 0 for NC-SARAH in order to have the same option
as SpiderBoost, i.e., b =

√
n and m =

√
m. Hence, we have the learning rate of

NC-SARAH

2

L

(√
1 + 4

(
n−n1/2

n−1

)
+ 1

) .
We notice that n−n

1/2

n−1 < 1 for n > 1. Hence, we have

2

L

(√
1 + 4

(
n−n1/2

n−1

)
+ 1

) >
2

L(
√

5 + 1)
=

4

(
√

5 + 1)
· 1

2L
.

This completes the proof. ut

In Theorem 2 we can choose a smaller learning rate than the right-hand side of
(15) in NC-SARAH. In this sense, the above corollary shows that SpiderBoost is a
special case of NC-SARAH. The following subsection confirms numerically that the
choice of b =

√
n and m =

√
n in SpiderBoost is not the best choice.

4 Convex Case: Convergence Analysis of SARAH++

In this section, we propose a new variant of SARAH+ (Algorithm 2) [18], called
SARAH++ (Algorithm 3), for convex problems of form (1).

Different from SARAH, SARAH+ provides a stopping criteria for the inner loop;
as soon as

‖v(s)t−1‖2 ≤ γ‖v
(s)
0 ‖2,

the inner loop terminates. This idea originates from the property of SARAH that,
for each outer loop iteration s, E[‖v(s)t ‖2] → 0 as t → ∞ in the strongly convex

18 Lam M. Nguyen∗ et al.

case (Theorems 1a and 1b in [18]). Therefore, it does not make any sense to update
with tiny steps when ‖v(s)t ‖2 is small. (We note that SVRG [9] does not have this
property.) SARAH+ suggests to empirically choose parameter γ = 1/8 [18] without
theoretical guarantee.

Algorithm 2 SARAH+ [18]
Parameters: the learning rate η > 0, 0 < γ ≤ 1, the maximum inner loop size m, and the outer loop
size S
Initialize: w̃0

Iterate:
for s = 1, 2, . . . , S do
w

(s)
0 = w̃s−1

v
(s)
0 = 1

n

∑n
i=1∇fi(w

(s)
0)

w
(s)
1 = w

(s)
0 − ηv(s)0

t = 1
while ‖v(s)t−1‖2 > γ‖v(s)0 ‖2 and t ≤ m do

Sample it uniformly at random from [n]

v
(s)
t = ∇fit (w

(s)
t)−∇fit (w

(s)
t−1) + v

(s)
t−1

w
(s)
t+1 = w

(s)
t − ηv(s)t

t← t+ 1
end while
Set w̃s = w

(s)
t

end for

Here, we modify SARAH+ (Algorithm 2) into SARAH++ (Algorithm 3) by
choosing the stopping criteria for the inner loop as

‖v(s)t−1‖2 < γ‖v(s)0 ‖2 where γ ≥ Lη

and by introducing a stopping criteria for the outer loop.
Before analyzing and explaining SARAH++ in detail, we introduce the following

assumptions used in this section.

Assumption 2 (L-smooth) Each fi : Rd → R, i ∈ [n], is L-smooth, i.e., there exists
a constant L > 0 such that, ∀w,w′ ∈ Rd,

‖∇fi(w)−∇fi(w′)‖ ≤ L‖w − w′‖. (23)

Assumption 3 (µ-strongly convex) The objective functionF : Rd → R, is µ-strongly
convex, i.e., there exists a constant µ > 0 such that ∀w,w′ ∈ Rd,

F (w) ≥ F (w′) +∇F (w′)T (w − w′) + µ
2 ‖w − w

′‖2.

Under Assumption 3, let us define the (unique) optimal solution of (1) as w∗.
Then strong convexity of F implies that

2µ[F (w)− F (w∗)] ≤ ‖∇F (w)‖2, ∀w ∈ Rd. (24)

We note here, for future use, that for strongly convex functions of the form (1), aris-
ing in machine learning applications, the condition number is defined as κ def

= L/µ.

Finite-Sum Smooth Optimization with SARAH 19

Assumption 3 covers a wide range of problems, e.g. l2-regularized empirical risk
minimization problems with convex losses.

We separately assume the special case of strong convexity of all fi’s with µ = 0,
called the general convexity assumption, which we will use for convergence analysis.

Assumption 4 Each function fi : Rd → R, i ∈ [n], is convex, i.e.,

fi(w) ≥ fi(w′) +∇fi(w′)T (w − w′).

The following existing result is used in the proof of our main result in this section.

Lemma 3 (Lemma 3 in [18]) Suppose that Assumptions 2 and 4 hold. Consider v(s)t
defined as (2) in SARAH (Algorithm 1) with η < 2/L for any s ≥ 1. Then we have
that for any t ≥ 0,

E[‖∇F (w
(s)
t)− v(s)t ‖2] ≤ ηL

2− ηL

[
E[‖v(s)0 ‖2]− E[‖v(s)t ‖2]

]
. (25)

SARAH++ is motivated by the following lemma.

Lemma 4 Suppose that Assumptions 2 and 4 hold. Consider a single outer loop
iteration in SARAH (Algorithm 1) with η ≤ 1

L . Then, for t ≥ 0 and any s ≥ 1, we
have

E[F (w
(s)
t+1)− F (w∗)] ≤ E[F (w

(s)
t)− F (w∗)]−

η

2
E[‖∇F (w

(s)
t)‖2]

+
η

2

(
LηE[‖v(s)0 ‖2]− E[‖v(s)t ‖2]

)
, (26)

where w∗ is any optimal solution of F .

Proof By using (8) and adding−F (w∗) for both sides, wherew∗ = arg minw F (w),
we have

E[F (w
(s)
t+1)− F (w∗)]

≤ E[F (w
(s)
t)− F (w∗)]−

η

2
E[‖∇F (w

(s)
t)‖2] +

η

2
E[‖∇F (w

(s)
t)− v(s)t ‖2]

−
(
η

2
− Lη2

2

)
E[‖v(s)t ‖2]

(25)
≤ E[F (w

(s)
t)− F (w∗)]−

η

2
E[‖∇F (w

(s)
t)‖2]

+
η

2

ηL

(2− ηL)

(
E[‖v(s)0 ‖2]− E[‖v(s)t ‖2]

)
−
(
η

2
− Lη2

2

)
E[‖v(s)t ‖2]

= E[F (w
(s)
t)− F (w∗)]−

η

2
E[‖∇F (w

(s)
t)‖2]

+
η

2

(
ηL

(2− ηL)

(
E[‖v(s)0 ‖2]− E[‖v(s)t ‖2]

)
− (1− Lη)E[‖v(s)t ‖2]

)
η≤ 1

L

≤ E[F (w
(s)
t)− F (w∗)]−

η

2
E[‖∇F (w

(s)
t)‖2]

20 Lam M. Nguyen∗ et al.

Algorithm 3 SARAH++
Parameters: The controlled factor 0 < γ ≤ 1, the learning rate 0 < η ≤ γ

L
, the total iteration T > 0,

and the maximum inner loop size m ≤ T .
Initialize: w̃0

G = 0
Iterate:
s = 0
while G < T do
s← s+ 1

w
(s)
0 = w̃s−1

v
(s)
0 = 1

n

∑n
i=1∇fi(w

(s)
0)

t = 0
while ‖v(s)t ‖2 ≥ γ‖v

(s)
0 ‖2 and t ≤ m do

w
(s)
t+1 = w

(s)
t − ηv(s)t

t← t+ 1
if m 6= 0 then

Sample it uniformly at random from [n]

v
(s)
t = ∇fit (w

(s)
t)−∇fit (w

(s)
t−1) + v

(s)
t−1

end if
end while
Ts = t

w̃s = w
(s)
Ts

G← G+ Ts
end while
S = s
Set ŵ = w̃S

+
η

2

(
ηL
(
E[‖v(s)0 ‖2]− E[‖v(s)t ‖2]

)
− (1− Lη)E[‖v(s)t ‖2]

)
≤ E[F (w

(s)
t)− F (w∗)]−

η

2
E[‖∇F (w

(s)
t)‖2] +

η

2

(
LηE[‖v(s)0 ‖2]− E[‖v(s)t ‖2]

)
.

This completes the proof. ut

Clearly, if

LηE[‖v(s)0 ‖2]− E[‖v(s)t ‖2] ≤ γE[‖v(s)0 ‖2]− E[‖v(s)t ‖2] ≤ 0,

where η ≤ γ
L , inequality (26) implies

E[F (w
(s)
t+1)− F (w∗)] ≤ E[F (w

(s)
t)− F (w∗)]−

η

2
E[‖∇F (w

(s)
t)‖2].

For this reason, we choose the stopping criteria for the inner loop in SARAH++ as
‖v(s)t ‖2 < γ‖v(s)0 ‖2 with γ ≥ Lη. Unlike SARAH+, for analyzing the convergence
rate γ can be as small as Lη.

The above discussion leads to SARAH++ (Algorithm 3). In order to analyze its
convergence for convex problems, we define random variable Ts as the stopping time
of the inner loop in the s-th outer iteration:

Ts = min

{
min
t≥0

{
t : ‖v(s)t ‖2 < γ‖v(s)0 ‖2

}
,m+ 1

}
, s = 1, 2, . . .

Finite-Sum Smooth Optimization with SARAH 21

Note that Ts is at least 1 since at t = 0, the condition ‖v(s)0 ‖2 ≥ γ‖v(s)0 ‖2 always
holds (and m ≥ 0).

Let random variable S be the stopping time of the outer iterations as a function
of an algorithm parameter T > 0:

S = min
Ŝ

Ŝ :

Ŝ∑
s=1

Ts ≥ T

 .

Notice that SARAH++ maintains a running sumG =
∑s
j=1 Ti against which param-

eter T is compared in the stopping criteria of the outer loop.
For the general convex case which supposes Assumption 4 in addition to smooth-

ness we have the next theorem.

Theorem 3 (Smooth general convex) Suppose that Assumptions 2 and 4 hold. Con-
sider SARAH++ (Algorithm 3) with η ≤ γ

L , 0 < γ ≤ 1. Then,

E

[
1

T1 + · · ·+ TS

S∑
s=1

Ts−1∑
t=0

‖∇F (w
(s)
t)‖2

]
≤ 2

Tη
[F (w̃0)− F (w∗)].

Proof We recall the following definitions. Ts is the stopping time (a random variable)
of the s-th outer iteration such that

Ts = min

{
min
t≥0

{
t : ‖v(s)t ‖2 < γ‖v(s)0 ‖2

}
,m+ 1

}
, s = 1, 2, . . .

and S is the stopping time of the outer iterations (a random variable) and such that
for some T > 0

S = min
Ŝ

Ŝ :

Ŝ∑
s=1

Ts ≥ T

 .

Note that Ts ≥ 1 is the first time such that ‖v(s)Ts ‖
2 < γ‖v(s)0 ‖2. Hence, for a

given Ts, we have ‖v(s)t ‖2 ≥ γ‖v
(s)
0 ‖2, for 0 ≤ t ≤ Ts − 1, and

E[F (w
(s)
Ts

)− F (w∗)] ≤ E[F (w
(s)
Ts−1)− F (w∗)]−

η

2
E[‖∇F (w

(s)
Ts−1)‖2]

+
η

2

(
LηE[‖v(s)0 ‖2]− E[‖v(s)Ts−1‖

2]
)

η≤ γL
≤ E[F (w

(s)
Ts−1)− F (w∗)]−

η

2
E[‖∇F (w

(s)
Ts−1)‖2]

+
η

2

(
γE[‖v(s)0 ‖2]− E[‖v(s)Ts−1‖

2]
)

≤ E[F (w
(s)
Ts−1)− F (w∗)]−

η

2
E[‖∇F (w

(s)
Ts−1)‖2]

≤ E[F (w
(s)
0)− F (w∗)]−

η

2

Ts−1∑
t=0

E[‖∇F (w
(s)
t)‖2].

22 Lam M. Nguyen∗ et al.

Since w̃s = w
(s)
Ts

and w̃s−1 = w
(s)
0 , for given T1, . . . , TS , we have

E[F (w̃S)− F (w∗)] ≤ E[F (w̃S−1)− F (w∗)]−
η

2

TS−1∑
t=0

E[‖∇F (w
(s)
t)‖2]

≤ E[F (w̃0)− F (w∗)]−
η

2

S∑
s=1

Ts−1∑
t=0

E[‖∇F (w
(s)
t)‖2].

Since F (w̃S) ≥ F (w∗), bringing the second term of the RHS to the LHS. For
any given w̃0, we have

η

2

S∑
s=1

Ts−1∑
t=0

E[‖∇F (w
(s)
t)‖2|T1, . . . , TS] ≤ [F (w̃0)− F (w∗)].

Hence,

1

T1 + · · ·+ TS

S∑
s=1

Ts−1∑
t=0

E[‖∇F (w
(s)
t)‖2|T1, . . . , TS]

≤ 1

T1 + · · ·+ TS

2

η
[F (w̃0)− F (w∗)]

≤ 2

ηT
[F (w̃0)− F (w∗)],

where the last inequality follows since
∑S
s=1 Ts ≥ T . Hence, by taking the expecta-

tion to both sides, we could achieve the desired result. ut

The theorem leads to the next corollary about iteration complexity, i.e., we bound
T which is the total number of iterations performed by the inner loop across all outer
loop iterations. This is different from the total complexity since T does not separately
count the n gradient evaluations when the full gradient is computed in the outer loop.

Corollary 7 (Smooth general convex) For the conditions in Theorem 3 with η =
O(1

L), we achieve an ε-accurate solution after O(1
ε) inner loop iterations.

Proof The proof is trivial since we want 2
ηT [F (w̃0) − F (w∗)] = ε, which requires

T = 2[F (w̃0)−F (w∗)]
η · 1ε = O(1

ε) iterations, where we could choose η = O(1
L). ut

By supposing Assumption 3 in addition to the smoothness and general convexity
assumptions, we can prove a linear convergence rate. For strongly convex objective
functions we have the following result.

Theorem 4 (Smooth strongly convex) Suppose that Assumptions 2, 3 and 4 hold.
Consider SARAH++ (Algorithm 3) with η ≤ γ

L , 0 < γ ≤ 1. Then, for the final
output ŵ of SARAH++, we have

E[F (ŵ)− F (w∗)] ≤ (1− µη)T [F (w̃0)− F (w∗)]. (27)

Finite-Sum Smooth Optimization with SARAH 23

Proof Following the beginning part of the proof of Theorem 3, we have, for a given
Ts,

E[F (w
(s)
Ts

)− F (w∗)] ≤ E[F (w
(s)
Ts−1)− F (w∗)]−

η

2
E[‖∇F (w

(s)
Ts−1)‖2]

(24)
≤ (1− µη)E[F (w

(s)
Ts−1)− F (w∗)]

≤ (1− µη)TsE[F (w
(s)
0)− F (w∗)]

Since w̃s = w
(s)
Ts

and w̃s−1 = w
(s)
0 , for given T1, . . . , TS , we have

E[F (ŵ)− F (w∗)|T1, . . . , TS] = E[F (w̃S)− F (w∗)|T1, . . . , TS]

≤ (1− µη)T1+···+TS [F (w̃0)− F (w∗)]

≤ (1− µη)T [F (w̃0)− F (w∗)],

where the last inequality follows since
∑S
s=1 Ts ≥ T . Hence, by taking the expecta-

tion to both sides, we could have E[F (ŵ)− F (w∗)] ≤ (1− µη)T [F (w̃0)− F (w∗)].
ut

This leads to the following iteration complexity.

Corollary 8 (Smooth strongly convex) For the conditions in Theorem 4 with η =
O(1

L), we achieve E[F (ŵ) − F (w∗)] ≤ ε after O(κ log(1
ε)) total iterations, where

κ = L/µ is the condition number.

Proof We want (1− µη)T [F (w̃0)− F (w∗)] = ε. Hence,

T = − 1

log(1− µη)
log

(
[F (w̃0)− F (w∗)]

ε

)
.

Note that: − 1
x − 1 ≤ − 1

log(1+x) ≤ −
1
x , −1 < x < 0. We can have(

1

µη
− 1

)
log

(
[F (w̃0)− F (w∗)]

ε

)
≤ T ≤ 1

µη
log

(
[F (w̃0)− F (w∗)]

ε

)
.

By choosing η = O(1
L), we have T = O(κ log(1

ε)). ut

Remark 3 The proofs of the above results hold for any m ≤ T . If we choose m = 0,
then SARAH++ reduces to the Gradient Descent algorithm since the inner “while”
loop stops right after updating w(s)

1 = w
(s)
0 − ηv

(s)
0 . In this case, Corollaries 7 and 8

recover the rate of convergence and complexity of GD.

In this section, we showed that SARAH++ has a guarantee of theoretical conver-
gence (see Theorems 3 and 4) while SARAH+ does not have such a guarantee.

An interesting open question we would like to discuss here is the total complexity
of SARAH++. Although we have shown the convergence results of SARAH++ in
terms of the iteration complexity, the total complexity which is computed as the total
number of evaluations of the component gradient functions still remains an open

24 Lam M. Nguyen∗ et al.

question. It is clear that the total complexity must depend on the learning rate η (or
γ) – the factor that decides when to stop the inner iterations.

We note that T can be “closely” understood as the total number of updates w(s)
t+1

of the algorithm. The total complexity is equal to
∑S
i=1(n + 2(Ti − 1)). For the

special case Ti = 1, i = 1, . . . , S, the algorithm recovers the GD algorithm with
T =

∑S
i=1 Ts = S. Since each full gradient takes n gradient evaluations, the total

complexity for this case is equal to nS = O(nε) (in the general convex case) and
nS = O(nκ log(1

ε)) (in the strongly convex case).
However, it is non-trivial to derive the total complexity of SARAH++ since it

should depend on the learning rate η. We leave this question as an open direction for
future research.

5 Numerical Experiments

In this section, we provide numerical experiments to show the advantages of NC-
SARAH over SPIDER and SpiderBoost on the binary classification problem with
non-convex loss function. We also show the advantage of SARAH++ over SARAH
on the logistic regression problems with convex loss function. We further propose a
practical version called SARAH Adaptive which improves the performance of SARAH
and SARAH++ for convex problems – numerical experiments on various data sets
show good overall performance.

5.1 Non-Convex Case: NC-SARAH

In this subsection, we numerically verify the advantages of NC-SARAH over SPI-
DER and SpiderBoost. We consider the binary classification problem with non-convex
loss function in [28] as follows

min
w∈Rd

F (w) =
1

n

n∑
i=1

[
fi(w) := log(1 + exp(−yixTi w)) +

λ

2

d∑
j=1

w2
i

1 + w2
i

] ,

(28)

where {xi, yi}ni=1 is the training data with xi ∈ Rd and yi ∈ {−1,+1}, i ∈ [n].
We conducted experiments to demonstrate the advantage in performance of NC-

SARAH over SPIDER and SpiderBoost on the popular classification data sets covtype
(n = 406, 708 training data; estimated L ' 1.90), ijcnn1 (n = 91, 701 training data;
estimated L ' 1.77), and w8a (n = 49, 749 training data, estimated L ' 7.05) from
LIBSVM [5]. Since we only care about the non-convexity of each fi, we can simply
choose λ = 0.01.

Figure 1 shows comparisons of the values of F (w), ‖∇F (w)‖2, and Test Ac-
curacy among NC-SARAH, SPIDER with ε = 0.1, SPIDER with ε = 0.01, and
SpiderBoost. In order to fit Spiderboost’s mini-batch size of b =

√
n we choose

γ = 0 in NC-SARAH and SPIDER. In this scenario, SPIDER with ε = 0.1 performs
similarly to SpiderBoost. We observe that NC-SARAH has better performance than

Finite-Sum Smooth Optimization with SARAH 25

Fig. 1: Comparisons of F (w), ‖∇F (w)‖2, and Test Accuracy among NC-SARAH, SPIDER with ε =
0.1, SPIDER with ε = 0.01, and SpiderBoost on covtype, ijcnn1 and w8a datasets

both SPIDER and SpiderBoost since NC-SARAH is able to adopt a larger learning
rate than those used in SPIDER and SpiderBoost (Corollaries 5 and 6) as shown in
Figure 1. We experimented with 10 runs and reported the average results with the
same initial point w0 for all the algorithms.

SpiderBoost only allows a mini-batch size of b =
√
n while NC-SARAH allows

b = n1/2−γ with m = n1/2+γ for γ ∈ [0, 0.5]. Figure 2 shows the sensitivity of γ for
NC-SARAH. We observe that the choice of b =

√
n and m =

√
n (or equivalently

γ = 0) is not a good choice; for covtype b ∈ [n0.1, n0.2] (or equivalently γ = 0.3, 0.4)
leads to the best performance. This demonstrates that allowing a flexible range of
mini-batch sizes beyond b =

√
n is beneficial.

5.2 Convex Case: SARAH++

The authors in [18] provide experiments showing good overall performance of SARAH
over other algorithms such as SGD [24], SAG [25], SVRG [9], etc. For this reason,
we provide experiments comparing SARAH++ directly with SARAH. We notice that
SARAH (with multiple outer loops) like SARAH++ has theoretical guarantees with
sublinear convergence for general convex and linear convergence for strongly convex
problems as proved in [18]. Because of these theoretical guarantees (which SARAH+

26 Lam M. Nguyen∗ et al.

Fig. 2: Comparisons of F (w), ‖∇F (w)‖2, and Test Accuracy for NC-SARAH with different values of
γ = {0, 0.1, 0.2, 0.3, 0.4, 0.5} on covtype, ijcnn1 and w8a datasets

does not have), SARAH itself may already perform well for convex problems and the
question is whether SARAH++ offers an advantage.

We consider `2-regularized logistic regression problems with

fi(w) = log(1 + exp(−yi〈xi, w〉)) + λ
2 ‖w‖

2, (29)

where {xi, yi}ni=1 is the training data and the regularization parameter λ is set to
1/n, a widely-used value in literature [25,18]. The condition number is equal to κ =
L/µ = n. We conducted experiments to demonstrate the advantage in performance of
SARAH++ over SARAH for convex problems on popular data sets including covtype,
ijcnn1, w8a (introduced in Section 5.1), and phishing (n = 7, 738 training data,
estimated L ' 7.49) from LIBSVM.

Figure 3 shows comparisons between SARAH++ and SARAH for different val-
ues of learning rate η. We depicted the value of log[F (w) − F (w∗)] (i.e. F (w) −
F (w∗) in log scale) for the y-axis and “number of effective passes” (or number of
epochs, where an epoch is the equivalent of n component gradient evaluations or
one full gradient computation) for the x-axis. For SARAH, we choose the outer loop
size S = 10 and tune the inner loop size m = {0.5n, n, 2n, 3n, 4n} to achieve the
best performance. The optimal solution w∗ of the strongly convex problem in (29) is
found by using Gradient Descent with stopping criterion ‖∇F (w)‖2 ≤ 10−15. We

Finite-Sum Smooth Optimization with SARAH 27

Fig. 3: Comparisons of log[F (w) − F (w∗)] between SARAH++ and SARAH with different learning
rates on covtype, ijcnn1, w8a, and phishing datasets

observe that, SARAH++ achieves improved overall performance compared to regular
SARAH as shown in Figure 3. From the experiments we see that the stopping crite-
ria ‖v(s)t ‖2 < γ‖v(s)0 ‖2 (γ = Lη) of SARAH++ is indeed important. The stopping
criteria helps the inner loop to prevent updating tiny redundant steps.

Fig. 4: Comparisons of log[F (w)−F (w∗)] between SARAH Adaptive and SARAH with different learn-
ing rates on covtype, ijcnn1, w8a, and phishing datasets

28 Lam M. Nguyen∗ et al.

5.3 SARAH Adaptive: A New Practical Variant

We now propose a practical adaptive method which aims to improve performance.
Although we do not have any theoretical result for this adaptive method, numerical
experiments are very promising and they heuristically show the improved perfor-
mance on different data sets.

Algorithm 4 SARAH Adaptive
Parameters: The maximum inner loop size m, the outer loop size S, the factor 0 < γ ≤ 1.
Initialize: w̃0

Iterate:
for s = 1, 2, . . . , S do
w

(s)
0 = w̃s−1

v
(s)
0 = 1

n

∑n
i=1∇fi(w

(s)
0)

t = 0
while ‖v(s)t ‖2 ≥ γ‖v

(s)
0 ‖2 and t ≤ m do

η
(s)
t = 1

L
· ‖v

(s)
t ‖

2

‖v(s)0 ‖2
(adaptive)

w
(s)
t+1 = w

(s)
t − η(s)t v

(s)
t

t← t+ 1
if m 6= 0 then

Sample it uniformly at random from [n]

v
(s)
t = ∇fit (w

(s)
t)−∇fit (w

(s)
t−1) + v

(s)
t−1

end if
end while
Set w̃s = w

(s)
t

end for

The motivation of this algorithm comes from the intuition of Lemma 4 for con-
vex optimization. For a single outer loop with η ≤ 1

L , (26) holds for SARAH (Al-

gorithm 1). Hence, for any s, we intentionally choose η = η
(s)
t =

‖v(s)t ‖
2

L‖v(s)0 ‖2
such

that LηE[‖v(s)0 ‖2] − E[‖v(s)t ‖2] = 0. Since ‖v(s)t ‖2 ≤ ‖v
(s)
0 ‖2, t ≥ 0, in [18] for

convex problems, we have η(s)t ≤ 1
L , t ≥ 0. We also stop the inner loop when

‖v(s)t ‖2 < γ‖v(s)0 ‖2 for some 0 < γ ≤ 1. SARAH Adaptive is given in detail in
Algorithm 4 without convergence analysis.

We have conducted numerical experiments on the same datasets and problems as
introduced in the previous subsection. Figures 4 and 5 show the comparison between
SARAH Adaptive and SARAH and SARAH++ for different values of η. We observe
that SARAH Adaptive has an improved performance over SARAH and SARAH++
(without tuning learning rate). In Figure 6 we present the numerical performance of
SARAH Adaptive for different values of γ =

{
1
2 ,

1
3 ,

1
4 ,

1
6 ,

1
8 ,

1
10 ,

1
12 ,

1
16

}
.

6 Conclusion and Future Research

In this paper, we address almost important open problems for the original SARAH
algorithm, i.e., SARAH for convex and non-convex optimization problems. For non-
convex optimization, we propose NC-SARAH, which achieves the state-of-the-art

Finite-Sum Smooth Optimization with SARAH 29

Fig. 5: Comparisons of log[F (w) − F (w∗)] between SARAH Adaptive and SARAH++ with different
learning rates on covtype, ijcnn1, w8a, and phishing datasets

Fig. 6: Comparisons of log[F (w) − F (w∗)] with different value of γ for SARAH Adaptive on covtype,
ijcnn1, w8a, and phishing datasets

asymptotic total complexity for finding a first-order stationary point based on only
the average smooth assumption as SPIDER and SpiderBoost. The total complexity
matches the lower-bound worst case complexity. Indeed, NC-SARAH has advantages
over SPIDER and SpiderBoost in both theory and practice. That is, NC-SARAH al-
lows larger learning rates as well as a range of mini-batch sizes. Numerical experi-
ments show how NC-SARAH outperforms SPIDER and SpiderBoost. In theory, our
proof is significantly simpler and more intuitive. Moreover, we showed the promis-

30 Lam M. Nguyen∗ et al.

ing numerical results for SARAH++ and SARAH Adaptive in the convex case. The
total complexity of SARAH++ and the convergence analysis of SARAH Adaptive
could be potential for future research. More general optimization problems (e.g. in
[21,22]) can be considered in the convex cases. In addition, we show that SARAH
(NC-SARAH and SARAH++) can be reduced to Gradient Descent - an open problem
since 2012 - which may motivate new research directions.

Data Availability Statement

The authors confirm that all data used in this paper are publicly available in https:
//www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/ [5].

References

1. Allen-Zhu, Z.: Natasha: Faster non-convex stochastic optimization via strongly non-convex parame-
ter. In: Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 89–97.
JMLR. org (2017)

2. Allen-Zhu, Z.: Natasha 2: Faster non-convex optimization than sgd. In: Advances in Neural Informa-
tion Processing Systems, pp. 2675–2686 (2018)

3. Allen-Zhu, Z., Yuan, Y.: Improved SVRG for Non-Strongly-Convex or Sum-of-Non-Convex Objec-
tives. In: ICML, pp. 1080–1089 (2016)

4. Bottou, L., Curtis, F.E., Nocedal, J.: Optimization Methods for Large-Scale Machine Learning. SIAM
Rev. 60(2), 223–311 (2018)

5. Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM Transactions on
Intelligent Systems and Technology 2, 27:1–27:27 (2011)

6. Defazio, A., Bach, F., Lacoste-Julien, S.: Saga: A fast incremental gradient method with support for
non-strongly convex composite objectives. In: Advances in Neural Information Processing Systems,
pp. 1646–1654 (2014)

7. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic
optimization. Journal of Machine Learning Research 12, 2121–2159 (2011)

8. Fang, C., Li, C.J., Lin, Z., Zhang, T.: Spider: Near-optimal non-convex optimization via stochastic
path-integrated differential estimator. In: Advances in Neural Information Processing Systems, pp.
689–699 (2018)

9. Johnson, R., Zhang, T.: Accelerating stochastic gradient descent using predictive variance reduction.
In: Advances in Neural Information Processing Systems, pp. 315–323 (2013)

10. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. CoRR abs/1412.6980 (2014)
11. Konečnỳ, J., Richtárik, P.: Semi-stochastic gradient descent methods. Frontiers in Applied Mathemat-

ics and Statistics 3, 9 (2017)
12. Lei, L., Ju, C., Chen, J., Jordan, M.I.: Non-convex finite-sum optimization via SCSG methods. In:

I. Guyon, U.V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, R. Garnett (eds.) Ad-
vances in Neural Information Processing Systems 30, pp. 2348–2358. Curran Associates, Inc. (2017)

13. Li, Z., Bao, H., Zhang, X., Richtárik, P.: Page: A simple and optimal probabilistic gradient estimator
for nonconvex optimization. In: International Conference on Machine Learning, pp. 6286–6295.
PMLR (2021)

14. Liu, Y., Feng, F., Yin, W.: Acceleration of svrg and katyusha x by inexact preconditioning. In: Inter-
national Conference on Machine Learning, pp. 4003–4012. PMLR (2019)

15. Mairal, J.: Optimization with first-order surrogate functions. In: International Conference on Machine
Learning, pp. 783–791 (2013)

16. Nesterov, Y.: Introductory lectures on convex optimization : a basic course. Applied optimization.
Kluwer Academic Publ., Boston, Dordrecht, London (2004)

17. Nguyen, L., Nguyen, P.H., van Dijk, M., Richtarik, P., Scheinberg, K., Takac, M.: SGD and Hogwild!
convergence without the bounded gradients assumption. In: Proceedings of the 35th International
Conference on Machine Learning-Volume 80, pp. 3747–3755 (2018)

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

Finite-Sum Smooth Optimization with SARAH 31

18. Nguyen, L.M., Liu, J., Scheinberg, K., Takáč, M.: SARAH: A novel method for machine learning
problems using stochastic recursive gradient. In: Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pp. 2613–2621. JMLR. org (2017)

19. Nguyen, L.M., Liu, J., Scheinberg, K., Takác, M.: Stochastic recursive gradient algorithm for noncon-
vex optimization. CoRR abs/1705.07261 (2017)

20. Nguyen, L.M., Nguyen, P.H., Richtárik, P., Scheinberg, K., Takáč, M., van Dijk, M.: New conver-
gence aspects of stochastic gradient algorithms. Journal of Machine Learning Research 20(176),
1–49 (2019). URL http://jmlr.org/papers/v20/18-759.html

21. Nguyen, L.M., Scheinberg, K., Takac, M.: Inexact sarah algorithm for stochastic optimization. Opti-
mization Methods and Software 0(0), 1–22 (2020). DOI 10.1080/10556788.2020.1818081

22. Pham, N.H., Nguyen, L.M., Phan, D.T., Tran-Dinh, Q.: Proxsarah: An efficient algorithmic framework
for stochastic composite nonconvex optimization. J. Mach. Learn. Res. 21, 110–1 (2020)

23. Reddi, S.J., Hefny, A., Sra, S., Poczos, B., Smola, A.: Stochastic variance reduction for nonconvex
optimization. In: International conference on machine learning, pp. 314–323 (2016)

24. Robbins, H., Monro, S.: A stochastic approximation method. The Annals of Mathematical Statistics
22(3), 400–407 (1951)

25. Roux, N.L., Schmidt, M., Bach, F.R.: A stochastic gradient method with an exponential convergence
rate for finite training sets. In: Advances in Neural Information Processing Systems, pp. 2663–2671

(2012)
26. Schmidt, M., Le Roux, N., Bach, F.: Minimizing finite sums with the stochastic average gradient.

Mathematical Programming pp. 1–30 (2016)
27. Shalev-Shwartz, S., Zhang, T.: Stochastic dual coordinate ascent methods for regularized loss. Journal

of Machine Learning Research 14(1), 567–599 (2013)
28. Wang, Z., Ji, K., Zhou, Y., Liang, Y., Tarokh, V.: Spiderboost: A class of faster variance-reduced

algorithms for nonconvex optimization. Advances in Neural Information Processing Systems (2019)
29. Zhou, D., Xu, P., Gu, Q.: Stochastic nested variance reduced gradient descent for nonconvex opti-

mization. In: Advances in Neural Information Processing Systems, pp. 3921–3932 (2018)

http://jmlr.org/papers/v20/18-759.html

	Introduction
	Non-Convex Case: Convergence Analysis of NC-SARAH
	Comparison of NC-SARAH, SPIDER, and SpiderBoost
	Convex Case: Convergence Analysis of SARAH++
	Numerical Experiments
	Conclusion and Future Research

