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Abstract
Mathematical optimization models can improve de-
cision making in a wide variety of domains, both
industrial and societal. However, creating an opti-
mization model requires rare optimization expertise
and a significant amount of time, thereby limiting
the widespread use of this technology. One way to
overcome this is to enable data driven generation of
complete optimization models from historical data.
A major challenge posed by such data-driven gen-
eration is that the uncertainties and inaccuracies re-
sulting from the model generation must be explic-
itly accounted for to ensure the quality of the so-
lutions ultimately produced by the generated opti-
mization model. Moreover, the historical data used
for such model generation must also contain de-
cision related data, which has very different char-
acteristics from the input typically used for ma-
chine learning models, further compounding the
difficulty of accounting for the uncertainties.
In this work, it is our goal to bring to light this im-
portant topic of end-to-end data driven optimiza-
tion model generation and encourage additional re-
search in this area. Our contributions here are
therefore to formally define the problem and out-
line several promising approaches for addressing it.
We also describe areas for future work, which gives
some indication of the breadth and depth of topics
to be addressed. We hope this will also motivate
others to carry out research in the broader field of
enabling widespread creation of optimization mod-
els by people who are not optimization experts.

1 Introduction and Motivation
Mathematical optimization can provide improved decision
support to a variety of real world problems, thereby providing
significant value to almost any domain (supply chain man-
agement, cloud computing operations, healthcare, environ-
mental impact reduction,...). Creating an optimization model
requires both modeling the constraints which govern the sys-

tem, as well as the objective function to be optimized. Cur-
rently, creating a mathematical optimization model requires
optimization modeling expertise, which is quite rare, as well
as significant time ( typically on the order of months). This
severely limits the actual application of mathematical opti-
mization and the benefits it currently provides. Therefore,
in order to enable mathematical optimization to realize its
true potential in terms of business benefits, there is a need
to enable none optimization experts to create such models in
a much shorter amount of time. A possible approach to ad-
dress this issue is to enable professionals such as data scien-
tists without extensive optimization background, to automat-
ically derive the optimization model, i.e., the objectives and
constraints, from a combination of historical data and eas-
ily specifiable problem knowledge. To enable such model
generation requires techniques and algorithms that are able to
transform the data and knowledge into an optimization spec-
ification as described in Figure 1 (examples of some relevant
techniques appear in Section 3 which describes related work).

Figure 1: Automated Optimization Model Derivation

As optimization models need to incorporate the effect of
the decision variables, the input data for such optimization
model generators needs to include information about the his-
torical decisions, e.g., as made by human experts. In many
real world use cases such historical data exists, potentially
making this approach feasible. Learning any model from data
introduces uncertainty and inaccuracy in the learnt model. In
this setting, such uncertainty and inaccuracy is compounded
due to historical decisions’ data. This is as decisions are ex-
plicit choices made by decision makers and therefore all pos-
sible decisions cannot be naturally modelled by a probabil-
ity distribution. In addition, typically, historical data will not
cover all of the possible decisions, but rather, will be from
a more restricted set, for example determined by use case



specific best practices. Moreover, the actual decisions made
could also influence the distribution of the other variables in
the dataset. Therefore, we cannot reasonably expect the au-
tomatically generated optimization model to capture the true
behavior for all possible decisions, both in terms of the ob-
jective and the constraints.

As the generated optimization model is subsequently used
to make decisions, any inaccuracies in the model could result
in a decision which is suboptimal. Indeed, it may even be
worse than the decision making practices currently in place,
which were used to generate the data. Moreover, as the ul-
timate goal of this automatic model derivation is to enable
none optimization experts to create optimization models, one
cannot rely on optimization experts to manually tweak the
model to improve the results. Therefore, such data-based
model derivation must be carried out in an almost fully au-
tomated fashion. It is therefore the goal of this article to for-
mally define the problem and outline possible approaches and
promising directions for addressing these uncertainties and
inaccuracies while allowing for such automated generation.

2 Formal Problem Definition
There is a system which can be influenced by a set of d de-
cision variables x, i.e., x ∈ X ⊂ Rd and a set of input
covariates p ∈ P ⊂ Rk. The system can be described by
an objective function f(x, p) and a feasibility set X ∩ Ω(p)
where Ω(p) ⊂ Rd can be defined by a set of T equations,
gt(x, p) ≤ 0, t ∈ {1, . . . , T}, and § is used to incorporate
constraints such as discreteness. Given this specification, the
goal is to solve the following problem:

x∗ = arg min
x∈X∩Ω(p)

f(x, p) (1)

However, we do not have the model of the system, nor the
real set of parameters p. Rather, we have some problem re-
lated knowledge K, and a set of data D so that each di ∈ D
is composed of a tuple of vectors di =< xi, yi, pi > such
that xi ∈ X ∩Ω(pi), and yi ∈ Y is a feature vector positively
correlated with pi. Moreover (yi, pi) are i.i.d from some joint
distribution P. Also, we have a mechanism which can gener-
ate a model composed of: A predictive model m : Y → P
and an optimization generation model o : K×Y ×Rd×P →
{f ′, g′1, . . . , g′T }. In this case,m is a typical predictive model,
that (for example, a forecasting model), and o is the mecha-
nism which takes the historical data, together with problem
specific knowledge K, and outputs an objective function and
set of optimization constraints.

Given a vector pair (y, p) drawn from P, We can then use
this model to find

x′∗ = arg min
x∈X∩Ω′(y)

f ′(x,m(y)) (2)

Where Ω′(y) is defined by x ∈ Rd s.t such that
g′t(x,m(y)) ≤ 0, t ∈ {1, . . . , T ′}.

The first condition for x
′∗ to be a good solution is that it is

feasible with a high enough probability, i.e.:

Pr(x
′∗ ∈ Ω(p)) ≥ (1− δ1) (3)

The second condition is that x
′∗ provides a sufficiently good

objective function value. One way to define this is that the
solution found by the approximate model {f ′, g′1, . . . , g′T } ε-
approximates the optimal solution of the true system with a
high probability. This is defined by the following equation:

Pr(|f(x′∗, p)− f(x∗, p)| ≤ ε) ≥ (1− δ2) (4)

An alternative way to define a good solution is by how much
it improves over the existing decision policy, which would
capture for example, the way that currently such decisions are
made. We model this decision policy with a function h : Y ×
X → [0, 1], where h(y, x) = Pry(x), y ∈ Y , x ∈ X , where
Pry is a function of x determined by y which for each x, gives
the probability that x is selected (We assume that existing
decision policies enable selecting between a finite number of
actions). Let us denote by Xh(y) the random variable that is
the actual value x selected by h(y, x). Then we can define
the following condition:

Pr(f(Xh(y), p)− f(x′∗,m(y)) ≥ ε) ≥ (1− δ2) (5)

Which specifies that x′∗ improves h by ε with a high enough
probability. An alternative formulation can require that the
improvement is by at least an ε percentage: :

Pr(f(x′∗,m(y)) ≤ (1− ε)f(Xh(y))) ≥ (1− δ2) (6)

Needless to say, there is a significant difference between the
quality requirement as specified in Equation 4 and the qual-
ity requirement as specified by Equation 5 or Equation 6, as
Equation 4 requires finding an approximation to the global
optimum, while the other only requires a local improvement.
Therefore, it should be much easier to obtain algorithms that
enable Equation 5 or Equation 6. Of course, the value result-
ing from enabling Equation 4 is expected to be much higher
unless h already is close to optimal. However, any solution
that is able to generate a model that provides Equation 5 or 6
can be used repeatedly to provide incremental improvements
as described in Figure 2. Therefore, there is also significant
value in algorithms that are able to generate optimization that
meets Equation 5 or 6.

Figure 2: Incremental improvement process

3 Related Work
There are existing works on creating optimization models or
parts of optimization models from data. For example, [Ar-
cangioli et al., 2016] and [De Raedt et al., 2018] focus on
learning constraints from data. In [Lombardi et al., 2017],
a machine learning model of a complex system (an example
system in the paper is a thermal aware dispatching system of
a CPU) is generated from data, and then subsequently auto-
matically transformed into an optimization model. The work



in [Subramanian et al., 2019] not only learns machine learn-
ing models for multiple components of a complex industrial
process, but also incorporates knowledge specification in the
form of intermediate storage nodes, from which a process-
wide optimization model is generated. However, while these
works address automatic derivation of optimization models,
they do not address the uncertainty resulting from the gener-
ation process. Rather, there seems to be an implicit reliance
on an optimization expert to validate these models, refining
them if necessary.

Works such as [Wilder et al., 2019] and [Elmachtoub and
Grigas, 2020] address the issue of integrating machine learn-
ing and optimization models, as well as addressing how to
account for the uncertainty in the optimization models. In-
deed, these works define an objective function for the ma-
chine learning model that takes into account the optimization
objective. However, the problem addressed by these works
are significantly different than the problem described in Sec-
tion 2: it assumes that the structure of the functions describ-
ing the objectives and constraints are given, and that there
is uncertainty only regarding the covariates of the objective
function. Moreover, these works do not account for machine
learning models that can be influenced by decision variables,
which is historical data with very different behavior as de-
scribed above. This makes it a significantly simpler (although
still challenging) problem than the one defined in Section 2.
In addition, it tries to optimize the expected objective given
the predicted parameters, and not the probability of optimal-
ity or probability of improvement as defined by Equations 4 -
6.

Section 2 assumes that the optimization problem is spec-
ified explicitly through a set of mathematical functions
{f, g1, . . . , gt}. However, there are also alternative ap-
proaches to specify optimization problems. The use of
metahueristics, for example, (see [Yang, 2011]) enable the
constraints and objectives to be specified in a functional form
using any programming language, enabling none optimiza-
tion experts to easily specify such problems. However, in
many cases, the metahueristics algorithms have to be manu-
ally tuned by experts to provide a valuable solution, which
means that experts still need to be involved in the end-to-end
solution process. The explicit mathematical representation
our work is targeting can typically be used as input to state of
the art mathematical programming solvers, significantly in-
creasing the likelihood that good solutions will be found.

Another well known optimization approach is Reinforce-
ment Learning, or RL ([Sutton and Barto, 2018]). RL by
definition seems to be more suitable for none optimization
experts for several reasons. First, the problem is specified at
a high level, in terms of states, actions, rewards and transition
probabilities. In addition, learning is by design embedded
into the solution concepts. However, creating good RL mod-
els still requires experts, for example to define a good state
space representation and parameterization, decide on the ap-
propriate learning algorithm, reward function, etc. Therefore,
while in this work we focus on explicit optimization model
representation, automatic derivation of RL models is another
important topic to address, and indeed, is the subject of some
of our future work. In addition, RL algorithms are currently

less suitable for handling optimization problems with com-
plex constraints. Finally, some of the RL work has direct
relevant to this work as well: The work in [Thomas et al.,
2015] defines a problem similar in spirit to Equation 6 in
the sense that a policy is sought that improves, with a high
enough probability, the objective as compared to the objec-
tive obtained by the policy used to generate the data used for
RL. In [Yu et al., 2020], an environment model, which is then
used as input to the RL algorithm, is learnt from data. and the
uncertainty of the environment model is explicitly taken into
account in the reward function.

4 Solution Requirements and Possible
Approaches

To satisfactorily address the problem described in Section
2 requires incorporating data-driven regression equations in
both the estimated objective function f ′ and the estimated
constraints {g′1, . . . , g′T ′}, as well as involve the optimization
decision variables as features in the learnt models.

It is important to note that the accuracy requirement for
the generated objective function is very different from the re-
quirements for the constraints. For example, if f ′ has the
monotonicity property as appearing in Equation 7 (with p, y
being in the support of P), then any x that maximizes f ′ will
also maximize f .

∀x1, x2,

f(x2, p) > f(x1, p)⇒ f ′(x2,m(y, )) > f ′(x1, (m(y))
(7)

This does not hold, however, for the constraints, which may
require much better estimates, in the traditional metrics used
to measure prediction models, than the objective. Therefore,
to achieve the required accuracy, it may be required to en-
force two desired characteristics: model fidelity and data suf-
ficiency. By model fidelity, we require that each of the re-
gression equations that participate in the objective function or
the constraints enjoys acceptable prediction accuracy in the
neighborhood of the optimal solution. By data sufficiency
we mean that the optimal solution also should ideally be-
long to a region in the space of decision variables where we
have sufficient historical data. This is important because de-
cision variables are input features that excite the various re-
gression functions in the above problem formulation. These
two desiderata are likely related to each other, but distinctly
important for producing acceptable solutions in practice.

In order to achieve these desiderata, it will be necessary to
restrict the solution space. I.e., Equation 2 will have to be
further restricted so that the feasible region for the solution
x′∗ will have sufficient data sufficiency and model fidelity.
Given this, it will be difficult to obtain a solution which is an
approximate global optimal as desired by Equation 4. There-
fore, in this section, we focus on ways to achieve an improved
solution as defined by Equation 5 or Equation 6.

Focusing on finding an improved solution, and keeping the
requirements of model fidelity and data sufficiency in mind,
we suggest below a general approach. Assume we fix the pa-
rameter δ2 which defines the probability by which a solution
should be better than existing practices. What we would now



like is to find the spaces of model fidelity and data sufficiency
that maximize the ε so that Equation 5 holds. (a similar for-
mulation can be derived for Equation 6). Specifically, our
methodology follows the following steps: we begin with an
initial set of model fidelity and data sufficiency regions. We
then derive an optimization model ({f ′, g′1, . . . , g′T ′ ,m} us-
ing these regions. We then test how much of an improvement
the generated model provides. We repeat this process using
multiple model fidelity and data sufficiency regions.

In the sequel we outline two possible methods to imple-
ment this approach: One using robust optimization, and one
using Gaussian processes.

Robust optimization ([Ben-Tal et al., 2009; Bertsimas et
al., 2011]) is a method for solving optimization problems
with uncertainty. The method consider that uncertain param-
eters of the optimization problem belong to some bounded
region known as an uncertainty set and constructs an alter-
native optimization problem, known as the robust counter-
part, which, in many cases, can be solved efficiently. The
method guarantee that solution of the robust counterpart prob-
lem is feasible for any realization of the uncertainty within
the bounded region and provide a best objective value for the
worst possible set of parameters. Moreover, under some nat-
ural assumptions on the distributions of the uncertain param-
eters this method allows to construct bounded uncertainty set
even if the corresponding probability distributions have infi-
nite support, ensuring that any constraint of the optimization
problem holds with given probability. Similarly, the method
can guarantee the worst bound of the objective value with any
given probability.

Given this ability to formulate and solve robust optimiza-
tion problems, a possible approach would be to find the op-
timal regions in terms of model fidelity and data sufficiency
so that the generated uncertain optimization model will be
computationally tractable and so that the resulting uncertainty
set will have: (i ) the minimal possible volume, allowing to
build a robust counterpart whose solution guarantees the best
possible improvement, and (ii ) , the structure that allows to
build the computationally tractable robust counterpart. This
requires that the optimization generation mechanism o is able
to provide an estimate for error between the actual optimiza-
tion problem and learnt optimization problem, both in terms
of the constraints and the objectives. In addition, obtaining
a computationally tractable optimization model places ad-
ditional restrictions on optimization generation mechanism.
For example, restricting o to generate piecewise linear func-
tions allows construction of an uncertain mixed integer lin-
ear program (MILP), that can be further transformed into a
MILP robust counterpart, assuming a polyhedral uncertainty
set is selected. While the choice of the structure of the un-
certainty set depends on the tractability requirements of the
robust counterpart, the volume of the uncertainty set depends
on the precision of the predictive model. This means that the
quality of the objective function could be improved, once we
obtain a better prediction of the uncertain parameters.

Gaussian Processes The solution method discussed in this
section can also be tackled using Gaussian processes (GPs).
Examining the problem from a Bayesian perspective, we can
view both f and Ω stochastically. In fact, restricting Ω to sub-

sets defined via a finite set of (linear, quadratic, etc.) inequal-
ities {fi(x) ≤ 0} provides us with a well-defined notion of
stochasticity for Ω (though this requires a global upper bound
on the number of constraints). Given Ω ∼ O, which is estab-
lished either as a prior derived from business problem knowl-
edge or as a posterior that additionally absorbs historical data,
we can formulate a joint posterior GPO that ties f to Ω, so
that GPO(Ω = Ω′) ≡ GPf |D∩Ω′ , the latter being the Gaus-
sian process posterior established on f given D restricted to
Ω′. Given some x0, for instance, the current best practice or
policy, GPO then provides the marginal probability of im-
provement Pr[f(x′, ·) < f(x0, ·) + ε] for the minimization
problem defined.

This marginal probability of improvement is a strong met-
ric with which to assess any prediction-optimization scheme,
namely, any scheme that, given dataD associated with an ob-
jective target f and a (prior or posterior) Ω ∼ O, produces an
optimal solution x′. It combines the potential for gain on f
with the risk of choosing x′ far from what the business expert
believes or the data considers to be sensible constraints, while
also making sure that we learn f from the most relevant data
points. We can subsequently use the marginal probability of
improvement to continuously improve our estimate x′ of x∗
by iteratively adapting the feasibility and sufficiency regions
so that we optimize the marginal probability of improvement.
This can be done, for example, by using Bayesian optimiza-
tion.

5 Summary and Future work
In this work, we introduced the challenge of automating the
creation of optimization models from data, which also needs
to include a unique type of data, historical decisions. As we
discussed, such generation must take into account the inher-
ent uncertainty of both the generated objectives and generated
constraints, while accounting for the fact that the optimiza-
tions’ decision variables are features in the learnt models. We
formally defined the problem to be addressed, and provided
possible approaches to address this problem. Of course, the
outlined methods have to be fully fleshed out, placed on a
firm theoretical basis and tested empirically. We already have
some more detailed results and algorithms which are beyond
the scope of this work, and are continuing to expend them as
a major thrust of our ongoing research.

The approaches we outlined in Section 4 follow the tradi-
tional ”predict-then-optimize” approach, where we first learn
an optimization model from data, and then use this model
to optimize. Therefore, a possible avenue of future work is
to enhance the work to include techniques such as the ones
appearing in [Elmachtoub and Grigas, 2020] and [Wilder et
al., 2019] which incorporate directly the optimization model
objective during the models’ learning. Another avenue for
future work is to find methods which attempt to address the
global optimality of the generated models (Equation 4), rather
then just seeking gradual improvement (Equations 5 and 6).
An additional future direction is to enable the end-to-end gen-
eration of RL models as discussed in Section 3.

Incorporating the uncertainty of model generation so as to
enable end-to-end optimization model creation is a huge area,



and we feel that we have only begun to scratch the surface.
Moreover, it has immense potential benefits in terms of the
value the widespread use of optimization can provide to in-
dustry and society. We therefore hope that this work will en-
courage and motivate others to carry out research in this field.
Furthermore, this is just one, albeit major, aspect in enabling
none optimization experts to create optimization models. Ad-
dressing this broader topic of optimization model creation by
none experts is also a ripe area for research and innovation.
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