
Hybrid Stochastic Gradient Descent Algorithms for
Stochastic Nonconvex Optimization

Quoc Tran-Dinh†, Nhan H. Pham†, Dzung T. Phan‡, and Lam M. Nguyen‡

†Department of Statistics and Operations Research
The University of North Carolina at Chapel Hill, Chapel Hill, NC27599, USA.

quoctd@email.unc.edu, nhanph@live.unc.edu
‡IBM Research, Thomas J. Watson Research Center

Yorktown Heights, NY10598, USA.
phandu@us.ibm.com, LamNguyen.MLTD@ibm.com

May 14, 2019

Abstract

We introduce a hybrid stochastic estimator to design stochastic gradient algorithms for
solving stochastic optimization problems. Such a hybrid estimator is a convex combination
of two existing biased and unbiased estimators and leads to some useful property on its
variance. We limit our consideration to a hybrid SARAH-SGD for nonconvex expectation
problems. However, our idea can be extended to handle a broader class of estimators in
both convex and nonconvex settings. We propose a new single-loop stochastic gradient
descent algorithm that can achieve O

(
max

{
σ3ε−1, σε−3

})
-complexity bound to obtain an

ε-stationary point under smoothness and σ2-bounded variance assumptions. This complexity
is better than O

(
σ2ε−4

)
often obtained in state-of-the-art SGDs when σ < O

(
ε−3

)
. We

also consider different extensions of our method, including constant and adaptive step-size
with single-loop, double-loop, and mini-batch variants. We compare our algorithms with
existing methods on several datasets using two nonconvex models.

1 Introduction
Consider the following stochastic nonconvex optimization problem of the form:

min
x∈Rp

{
f(x) := Eξ [f(x; ξ)]

}
, (1)

where f(·; ·) : Rp × Ω→ R is a stochastic function defined such that for each x ∈ Rp, f(x; ·) is a
random variable in a given probability space (Ω,P), while for each realization ξ ∈ Ω, f(·; ξ) is
smooth on Rp; and Eξ [f(x; ξ)] is the expectation of f(x; ξ) w.r.t. ξ over Ω.
Our goals and assumptions: Since (1) is nonconvex, our goal in this paper is to develop a
new class of stochastic gradient algorithms to find an ε-approximate stationary point x̃T of (1)
such that E

[
‖∇f(x̃T )‖2

]
≤ ε2 under mild assumptions as stated in Assumption 1.1.

Assumption 1.1. The objective function f of (1) satisfies the following conditions:
(a) (Boundedness from below) There exists a finite lower bound f? := infx∈Rp f(x) > −∞.
(b) (L-average smoothness) The function f(·; ξ) is L-average smooth on Rp, i.e. there exists

L ∈ (0,+∞) such that

Eξ
[
‖∇f(x; ξ)−∇f(y; ξ)‖2

]
≤ L2‖x− y‖2, ∀x, y ∈ Rp. (2)

1



(c) (Bounded variance) There exists σ ∈ (0,∞) such that

Eξ
[
‖∇f(x; ξ)−∇f(x)‖2

]
≤ σ2, ∀x ∈ Rp. (3)

These assumptions are very standard in stochastic optimization methods [9, 13]. The
L-average smoothness of f is weaker than the smoothness of f for each realization ξ ∈ Ω.
Note that our methods described in the sequel are also applicable to the finite-sum problem
minx

{
f(x) = 1

n

∑n
i=1 fi(x)

}
as long as the above assumptions hold. However, we do not specify

our methods to solve this problem. In this case, σ in (3) can be replaced by other alternatives,
e.g., σ2

n := 1
n

∑n
i=1

[
‖∇fi(x)‖2 − ‖∇f(x)‖2

]
.

Our key idea: Different from existing methods, we introduce a convex combination of a biased
and unbiased estimator of the gradient ∇f of f , which we call a hybrid stochastic gradient
estimator. While the biased estimator exploited in this paper is SARAH in [15], the unbiased
one can be any unbiased estimator. SARAH is a recursive biased and variance reduced estimator
for ∇f . Combining it with an unbiased estimator allows us to reduce the bias and variance of
the hybrid estimator. In this paper, we only focus on the standard stochastic estimator as an
unbiased candidate.
Related work: Under Assumption 1.1, problem (1) covers a large number of applications in
machine learning and data sciences. The stochastic gradient descent (SGD) method was first
studied in [24], and becomes extremely popular in recent years. [13] seems to be the first work
showing the convergence rates of robust SGD variants in the convex setting, while [14] provides
an intensive complexity analysis for many optimization algorithms, including stochastic methods.
Variance reduction methods have also been widely studied, see, e.g. [1, 5, 7, 10, 19, 21, 25, 26, 28].
In the nonconvex setting, [9] seems to be the first algorithm achieving O

(
σ2ε−4

)
-complexity

bound. Other researchers have also made significant progress in this direction, including [2, 3, 4,
8, 12, 16, 17, 18, 22, 27, 30]. A majority of these works, including [2, 3, 4, 12, 22], rely on SVRG
estimator in order to obtain better complexity bounds. Hitherto, the complexity of SVRG-based
methods remains worse than the best-known results, which is obtained in [8, 20, 27] via the
SARAH estimator. However, as discussed in [20, 27], the method called SPIDER in [8, 12] does
not practically perform well due to small step-size and its dependence on the reciprocal of the
estimator’s norm. [27] amends this issue by using a large constant step-size, but requires large
mini-batch and does not consider the single sample case and single loop variants. [20] provides a
more general framework to treat composite problems where it covers (1) as special case, but it
does not consider the single loop as in SGDs.
Our contribution: To this end, our contribution can be summarized as follows:

(a) We propose a hybrid stochastic estimator for a stochastic gradient of a nonconvex function f
in (1) by combining the SARAH estimator from [15] and any unbiased stochastic estimator
such as SGD and SVRG. However, we only focus on the SGD estimator in this paper.
We prove some key properties of this hybrid estimator that can be used to design new
algorithms.

(b) We exploit our hybrid estimator to develop a single-loop SGD algorithm that can achieve
an ε-stationary point x̃m such that E

[
‖∇f(x̃m)‖2

]
≤ ε2 in at most O

(
σε−3 + σ3ε−1

)
stochastic gradient evaluations. This complexity significantly improves O

(
σ2ε−4

)
of SGD

if σ < O
(
ε−3
)
. We extend our algorithm to a double loop variant, which requires

O
(
max

{
σε−3, σ2ε−2

})
stochastic gradient evaluations. This is the best-known complexity

in the literature for stochastic gradient-type methods for solving (1).

(c) We also investigate other variants of our method, including adaptive step-sizes, and mini-
batches. In all these cases, our methods achieve the best-known complexity bounds.

Let us emphasize the following points of our contribution. Firstly, although our single-loop
method requires three gradients per iteration compared to standard SGDs, it can achieves better
complexity bound. Secondly, it can be cast into a variance reduction method where it starts
from a “good” approximation v0 of ∇f(x0), and aggressively reduces the variance. Thirdly, our

2



step-size is η = O
(
m−1/3

)
which is larger than η = O

(
m−1/2

)
in SGDs. Fourthly, the step-size

of the adaptive variant is increasing instead of diminishing as in SGDs. Finally, our method
achieves the same best-known complexity as in variance reduction methods studied in [8, 20, 27].
We believe that our approach can be extended to other estimators such as SVRG [10] and SAGA
[7], and can be used for Hessians to develop second-order methods as well as to solve convex and
composite problems.
Paper organization: The rest of this paper is organized as follows. Section 2 introduces our
new hybrid stochastic estimator for the gradient of f and investigates its properties. Section
3 proposes a single-loop hybrid SGD-SARAH algorithm and its complexity analysis. It also
considers a double-loop and mini-batch variants with rigorous complexity analysis. Section 4
provides two numerical examples to illustrate our methods and compares them with state-of-
the-art methods. All the proofs and additional experiments can be found in the Supplementary
Document.

Notation: We work with Euclidean spaces, Rp, equipped with standard inner product 〈·, ·〉
and norm ‖·‖. For a smooth function f (i.e., f is continuously differentiable), ∇f denotes its
gradient. We use Up(S) to denote a distribution on S with probability p. If p is uniform, then
we simply use U(S). We also use O (·) to present big-O notion in complexity theory, and σ(·) to
denote a σ-field.

2 Hybrid stochastic gradient estimators
In this section, we propose new stochastic estimators for the gradient of a smooth function f .

Let ut be an unbiased estimator of∇f(xt) formed by a realization ζt of ξ, i.e. Eζt [ut] = ∇f(xt).
We attempt to develop the following stochastic estimator for ∇f(xt) in (1):

vt := βt−1vt−1 + βt−1(∇f(xt; ξt)−∇f(xt−1; ξt)) + (1− βt−1)ut, (4)

where ξt and ζt are two independent realizations of ξ on Ω. Clearly, if βt = 0, then we obtain a
simple unbiased stochastic estimator, and βt = 1, we obtain the SARAH estimator in [15]. We
are interested in the case βt ∈ (0, 1), in which we call vt in (4) a hybrid stochastic estimator.

Note that we can rewrite vt as

vt := βt−1∇f(xt; ξt) + (1− βt−1)ut + βt−1(vt−1 −∇f(xt−1; ξt)).

The first two terms are two stochastic gradients estimated at xt, while the third term is the
difference vt−1 −∇f(xt−1; ξt) of the previous estimator and a stochastic gradient at the previous
iterate. Here, since βt−1 ∈ (0, 1), the main idea is to exploit more recent information than the
old ones. In fact, the hybrid estimator vt covers many other estimators, including SGD, SVRG,
and SARAH. We can use one of the following two concrete unbiased estimators ut of ∇f(xt) as
follows:

• The SGD estimator: ut := usgd
t = ∇f(xt; ζt).

• The SVRG estimator: ut := usvrg
t = ∇f(x̃) +∇f(xt; ζt)−∇f(x̃; ζt), where ∇f(x̃) is a

full gradient evaluated at a given snapshot point x̃.
However, for the sake of presentation, we only focus on the SGD estimator ut := usgd

t .
We first prove the following property of the estimator vt showing how the variance is estimated.

Lemma 2.1. Let vt be defined by (4). Then

E(ξt,ζt) [vt] = ∇f(xt) + βt−1(vt−1 −∇f(xt−1)). (5)

If βt−1 6= 0, then vt is a biased estimator. Moreover, we have

E(ξt,ζt)

[
‖vt −∇f(xt)‖2

]
= β2

t−1‖vt−1 −∇f(xt−1)‖2 − β2
t−1‖∇f(xt−1)−∇f(xt)‖2

+ β2
t−1Eξt

[
‖∇f(xt; ξt)−∇f(xt−1; ξt)‖2

]
+ (1− βt−1)2Eζt

[
‖ut −∇f(xt)‖2

]
.

(6)

3



Remark 2.1. From (4), we can see that vt remains a biased estimator as long as βt−1 ∈ (0, 1].
Its biased term is

Bias(vt) = ‖E(ξt,ζt) [vt −∇f(xt) | Ft] ‖ = βt−1‖vt−1 −∇f(xt−1)‖ ≤ ‖vt−1 −∇f(xt−1)‖.

This shows that the bias vt estimator is smaller than the one in the SARAH estimator vsarah
t :=

vsarah
t−1 +∇f(xt; ξt)−∇f(xt−1; ξt) from [15], which is Bias(vsarah

t ) = ‖vsarah
t−1 −∇f(xt−1)‖.

The following lemma bounds the second moment of vt −∇f(xt) with vt defined in (4).

Lemma 2.2. Assume that f(·, ·) is L-smooth and ut is an SGD estimator. Then, we have the
following upper bound on the variance E

[
‖vt −∇f(xt)‖2

]
of vt:

E
[
‖vt −∇f(xt)‖2

]
≤ ωtE

[
‖v0 −∇f(x0)‖2

]
+ L2

t−1∑
i=0

ωi,tE
[
‖xi+1 − xi‖2

]
+ St, (7)

where the expectation is taking over all the randomness Ft := σ(v0, v1, · · · , vt), ωt :=
∏t
i=1 β

2
i−1,

ωi,t :=
∏t
j=i+1 β

2
j−1 for i = 0, · · · , t, and St :=

∑t−1
i=0

(∏t
j=i+2 β

2
j−1

)
(1− βi)2σ2

i+1 for t ≥ 0.

Lemmas 2.1 and 2.2 provides two key properties to develop stochastic algorithm in Section
3.

3 Hybrid SARAH-SGD algorithms
In this section, we utilize our hybrid stochastic estimator vt in (4) to develop stochastic gradient
methods for solving (1). We consider three different variants using the hybrid SARAH-SGD
estimator.

3.1 The generic algorithm framework
Using vt defined by (4), we can develop a new algorithm for solving (1) as in Algorithm 1.

Algorithm 1 (Hybrid stochastic gradient descent (Hybrid-SGD) algorithm)
1: Initialization: An initial point x0 and parameters b, βt, and ηt (will be specified).
2: Generate an unbiased estimator v0 := 1

b

∑
ξ̂i∈B∇f(x0; ξ̂i) at x0 using a mini-batch B.

3: Update x1 := x0 − η0v0.
4: For t := 1, · · · ,m do
5: Generate a proper sample pair (ξt, ζt) independently (single sample or mini-batch).
6: Evaluate vt := βt−1vt−1 + βt−1

(
∇f(xt; ξt)−∇f(xt−1; ξt)

)
+ (1− βt−1)∇f(xt; ζt).

7: Update xt+1 := xt − ηtvt.
8: EndFor
9: Choose x̃m from {x0, x1, · · · , xm} (at random or deterministic, specified later).

Algorithm 1 looks essentially the same as any SGD scheme with only one loop. The differences
are at Step 3 with a mini-batch estimator v0 and at Step 6, where we use our hybrid gradient
estimator vt. In addition, we will show in the sequel that it uses different step-sizes and leads
to different variants. Unlike the inner loop of SARAH or SVRG, each iteration of Algorithm 1
requires three individual gradient evaluations instead of two as in these methods. The snapshot
at Step 3 of Algorithm 1 relies on a mini-batch B of the size b, which is independent of (ξt, ζt) in
the loop t.

3.2 Convergence analysis
We analyze two cases: constant step-size and adaptive step-size. In both cases, βt is fixed for all
t.

4



3.2.a Convergence of Algorithm 1 with constant step-size η and constant β
Assume that we run Algorithm 1 within m iterations m ≥ 1. In this case, given 0 < c1 <√
b(m+ 1), we choose η and β in Algorithm 1 as follows:

η :=
2

L(
√

1 + 4α2
m + 1)

with β := 1− c1√
b(m+ 1)

and α2
m :=

β2(1− β2m)

1− β2
. (8)

The following theorem estimates the complexity of Algorithm 1 to approximate an ε-stationary
point of (1), whose proof is given in Subsection 2.2 of the supplementary document.

Theorem 3.1. Let {xt} be the sequence generated by Algorithm 1 using the step-size η defined
by (8). Let us choose x̃m ∼ U({xt}mt=0). Then

(a) The step-size η satisfies η ≥ η :=
2
√
c1

3L
[
b(m+1)

]1/4 . In addition, we have

E
[
‖∇f(x̃m)‖2

]
≤

3b1/4L
[
f(x0)− f?

]
√
c1(m+ 1)3/4

+

(
c1 +

1

c1

)
σ2√

b(m+ 1)
. (9)

(b) If we choose b := c2σ
8/3(m+ 1)1/3 for any c2 > 0, then to guarantee E

[
‖∇f(x̃m)‖2

]
≤ ε2,

we need to choose

m :=

⌊
σ
ε3

[
3Lc

1/4
2√
c1

[
f(x0)− f?

]
+
(
c1 + 1

c1

)
1√
c2

]3/2⌋
= O

( σ
ε3

)
. (10)

In particular, if we choose c1 = 1, then the number of oracle calls is Tge is

Tge :=
σ3

ε

[
3Lc

9/4
2

[
f(x0)− f?

]
+ 2c

3/2
2

]1/2
+

3σ

ε3

[
3Lc

1/4
2

[
f(x0)− f?

]
+ 2√

c2

]3/2
= O

(
σ3

ε
+
σ

ε3

)
.

(11)

Moreover, the step-size η satisfies η ≥ η := 2

3Lc
1/4
2 σ2/3(m+1)1/3

= O
(
m−1/3

)
.

Here, Tge stands for the number of stochastic gradient evaluations of f in (1). The complexity
Tge in (11) can be written as Tge = O

(
max

{
σε−3, σ3ε−1

})
. If σ < O

(
1
ε

)
, then our complexity

is Tge = O
(
σε−3

)
. Even if σ < O

(
1
ε3

)
, then our complexity is still better than O

(
σ2ε−4

)
in

SGD.

3.2.b Convergence of Algorithm 1 with adaptive step-size ηt and constant β
Let β := 1− c1√

b(m+1)
∈ (0, 1) be fixed for some 0 < c1 <

√
b(m+ 1). Instead of fixing step-size

ηt as in (8), we can update it adaptively as

ηm :=
1

L
, and ηt :=

1

L+ L2
[
β2ηt+1 + β4ηt+2 + · · ·+ β2(m−t)ηm

] for t = 0, · · · ,m− 1. (12)

It can be shown that 0 < η0 < η1 < · · · < ηm. Interestingly, our step-size is updated in an
increasing manner instead of diminishing as in existing SGD-type methods. Moreover, given
m, we can pre-compute the sequence of these step-sizes {ηt}mt=0 in advance within O (m) basic
operations. Therefore, it does not significantly incur the computational cost of our method.

The following theorem states the convergence of Algorithm 1 under the adaptive update (12),
whose proof is given in Subsection 2.3 of the supplementary document.

Theorem 3.2. Let {xt} be the sequence generated by Algorithm 1 using the step-size ηt defined
by (12). Let Σm :=

∑m
t=0 ηt, and x̃m ∼ Up({xt}mt=0) with pt := P (x̃m = xt) = ηt

Σm
. Then

(a) The sum Σm is bounded from below as Σm ≥
√
c1(m+1)3/4

2Lb1/4
.

5



(b) If we choose b := c2σ
8/3(m+ 1)1/3 for any c2 > 0, then to guarantee E

[
‖∇f(x̃m)‖2

]
≤ ε2,

we need to choose m :=
⌊
σ
ε3

[
3Lc

1/4
2√
c1

[
f(x0)− f?

]
+
(
c1 + 1

c1

)
1√
c2

]3/2⌋
= O

(
σ
ε3

)
. Therefore,

the number of stochastic gradient evaluations Tge is at most the same as in (11).

Note that in the finite sum case, i.e. |Ω| = n, we set b := min{n, c2σ8/3(m+ 1)1/3} in both
Theorems 3.1 and 3.2. This complexity remains the same as in Theorem 3.1. However, the
adaptive stepsize ηt potentially gives a better performance in practice as we will see in Section 4.

Algorithm 1 can be considered as a single-loop variance reduction method, which is similar
to SAGA [7], but Algorithm 1 aims at solving the nonconvex problem (1). It is different from
standard SGD methods, where it can be initialized by a mini-batch and then update the estimator
using three individual gradients. Therefore, it has the same cost as SGD with mini-batch of size
3. As a compensation, we obtain an improvement on the complexity bound as in Theorems 3.1
and 3.2.

3.3 Convergence analysis of the double loop variant
Since the step-size ηt depends on m, it is natural to run Algorithm 1 with multiple stages. This
leads to a double-loop algorithm as SVRG, SARAH, and SPIDER, where Algorithm 1 is restarted
at each outer iteration s. The detail of this variant is described in Algorithm 2.

Algorithm 2 (Double-loop HSGD algorithm)
1: Initialization: An initial point x̃0 and parameters b, m, βt, and ηt (will be specified).
2: OuterLoop: For s := 1, 2, · · · , S do
3: Run Algorithm 1 with an initial point x(s)

0 := x̃(s−1).

4: Set x̃(s) := x
(s)
m+1 as the last iterate of Algorithm 1.

5: EndFor

To analyze Algorithm 2, we use x(s)
t to represent the iterate of Algorithm 1 at the t-th inner

iteration within each stage s. From (45), we can see that each stage s, the following estimate
holds

η

2

m∑
t=0

E
[
‖∇f(x

(s)
t )‖2

]
≤ E

[
f(x

(s)
0 )
]
− E

[
f(x

(s)
m+1)

]
+
ησ2
√
m+ 1

(1 + β)
√
b
.

Here, we assume that we fix the step-size ηt = η > 0 for simplicity of analysis. The complexity of
Algorithm 2 is given in the following theorem, whose proof is in Supplementary Document 2.4.

Theorem 3.3. Let {x(s)
t }s=1→S

t=0→m be the sequence generated by Algorithm 2 using constant
step-size η in (8). Then, the following estimate holds

1

S(m+ 1)

S∑
s=1

m∑
t=0

E
[
‖∇f(x

(s)
t )‖2

]
≤ 3Lb1/4

S(m+ 1)3/4

[
f(x̃0)− f?

]
+

2σ2√
b(m+ 1)

. (13)

Let x̃T ∼ U({x(s)
t }s=1→S

t=0→m). If we choose b := c1σ
2

ε2 and m+ 1 := c2σ
2

ε2 for some constants c1 > 0
and c2 > 0 and c1c2 > 4, then, to guarantee E

[
‖∇f(x̃T )‖2

]
≤ ε2, we require at most

S :=

⌊
3Lc

1/4
1

[
f(x̃0)− f?

]
c
3/4
2 σ

(
1− 2√

c1c2

)
ε

⌋
outer iterations. (14)

Consequently, the total number of stochastic gradient evaluations Tge does not exceed

Tge := (b+ 3m)S =
3L(c1 + 3c2)c

1/4
1

[
f(x̃0)− f?

]
σ

c
3/4
2

(
1− 2√

c1c2

)
ε3

= O
( σ
ε3

)
. (15)

6



Note that the complexity (15) only holds if O
(
σ
ε3

)
> c1σ

2

ε2 . Otherwise, the total complexity is

O
(

max
{
σ
ε3 ,

σ2

ε2

})
, where other constants independent of σ and ε, and are hidden. Practically,

if β is very close to 1, one can remove the unbiased SGD term to save one stochastic gradient
evaluation. In this case, our estimator reduces to SARAH but using different step-size. We
observed empirically that when β ≈ 0.999, the performance of our methods is not affected if we
do so.

3.4 Extensions to mini-batch cases
We consider a mini-batch hybrid stochastic estimator v̂t for the gradient ∇f(xt) defined as:

v̂t := βt−1v̂t−1 +
βt−1

b̂t

∑
i∈B̂t

(∇f(xt; ξi)−∇f(xt−1; ξi)) + (1− βt−1)ut, (16)

where βt−1 ∈ [0, 1], and B̂t is a mini-batch of the size b̂t and independent of the unbiased
estimator ut. Note that ut can also be a mini-batch unbiased estimator. For example, ut :=
1
b̃t

∑
j∈B̃t
∇f(xt; ζj) is a mini-batch SGD estimator with a mini-batch B̃t of size b̃t, where B̃t is

independent of B̂t.
Using v̂t defined by (16), we can design a mini-batch variant of Algorithms 1 to solve (1).

The following corollary is obtained as a result of Theorems 3.1 for the mini-batch variant of
Algorithm 1, whose proof is in Subsection 3.2 of the supplementary document.

Corollary 3.1. Let Algorithm 1 be applied to solve (1) using mini-batch update (16) for vt with
b̂t = b̃t = b̂ ≥ 1 fixed, 0 < c1 <

√
b(m+ 1), and the step-size

η :=
2

L
(

1 +
√

1 + 4ρα2
m

) with α2
m :=

β2(1− β2m)

1− β2
and β := 1− c1√

ρb(m− 1)
. (17)

If we choose b := c2σ
8/3 [ρ(m+ 1)]

1/3 for any c2 > 0, then to guarantee E
[
‖∇f(x̃m)‖2

]
≤ ε2, we

need to choose

m :=

ρ1/2σ

ε3

[
3Lc

1/4
2

2c1

(
f(x0)− f?

)
+

(
c1 +

1

c1

)
1

2
√
c2

]3/2
 = O

(
ρ1/2σ

ε3

)
. (18)

Therefore, the number of oracle calls is Tge is

Tge := O
(
ρ1/2σ3

ε
+

σ

ρ1/2ε3

)
, (19)

where ρ = ρ(b̂) := n−b̂
(n−1)b̂

if n := |Ω| is finite, and ρ(b̂) := 1
b̂
, otherwise. In particular, if we choose

b̂ := ε2σ2

c23
for some 0 < c3 ≤ εσ, then, the overall complexity Tge is Tge := O

((
c3 + 1

c3

)
σ2

ε2

)
.

We can also develop a mini-batch variant of Algorithm 2 and estimate its complexity as in
Theorem 3.3. For more details, we refer to Subsection 3.3 in the supplementary document due
to space limit.

4 Numerical experiments
We verify our algorithms on two numerical examples and compare them with several existing
methods: SVRG [23], SVRG+ [11], SPIDER [8], SpiderBoost [27], and SGD [9]. Due to space
limit, the detailed configuration of our experiments as well as more numerical experiments can
be found in Supplementary Document D. Our numerical experiments are implemented in Python
and running on a MacBook Pro. Laptop with 2.7GHz Intel Core i5 and 16Gb memory.

7



4.1 Logistic regression with nonconvex regularizer
Our first example is the following well-known problem used in may papers including [27]:

min
x∈Rp

{
f(x) :=

1

n

n∑
i=1

[
fi(x) := log(1 + exp(−aTi x)) + λ

p∑
j=1

x2
i

1 + x2
i

]}
, (20)

where ai ∈ Rp are given for i = 1, · · · , n, and λ > 0 is a regularization parameter. Clearly,
problem (20) fits (1) well with Lfi = ‖A‖2

4 + 2λ. In this experiment, we choose λ = 0.1 and
normalize the data. One can also verify Assumption 1.1 due to the bounded Hessian of fi.

We use three datasets from LibSVM for (20): w8a (n = 49, 749, p = 300), rcv1.binary
(n = 20, 242, p = 47, 236), and real-sim (n = 72, 309, p = 20, 958). We run 8 different
algorithms as follows. Algorithm 1 with constant step-size (Hybrid-SGD-SL) and adaptive
step-size (Hybrid-SGD-ASL) using our theoretical step-sizes (8) and (12), respectively without
tuning. Hybrid-SGD-DL is Algorithm 2. SGD1 is SGD with constant step-size ηt = 0.1

L , and
SGD2 is SGD with adaptive step-size ηt = 0.1

L(1+bt/nc) . Since the stepsize of SPIDER depends on
an accuracy ε, we choose ε = 10−1 to get a larger step-size. Our first result in the single-sample
case (i.e. when b̂ = 1, not using mini-batch) is plotted in Fig. 1 after 20 epochs.

0 5 10 15 20

10
-5

10
0

Training Loss: w8a

0 5 10 15 20

10
-5

10
0

Training Loss: rcv1_train.binary

0 5 10 15 20

10
-5

10
0

Training Loss: real-sim

0 5 10 15 20

10
-2

10
-1

10
0

Norm of Gradient:  w8a

0 5 10 15 20

10
-2

10
0

Norm of Gradient:  rcv1_train.binary

0 5 10 15 20

10
-2

10
0

Norm of Gradient:  real-sim

Figure 1: The training loss and gradient norms of (20): Single sample case b̂ = 1.

From Fig. 1, we observe that Hybrid-SGD-SL has similar convergence behavior as SGD1, but
Hybrid-SGD-ASL works better. Hybrid-SGD-DL is the best but has some oscillation. SGD2
works better than SGD1 and is comparable with Hybrid-SGD-SL/ASL in the two last datasets.
SVRG performs very poorly due to its small step-size. SVRG+ works much better than SVRG,
and is comparable with our methods. SPIDER is also slow even when we have increased its
step-size.

Now, we run 3 single-loop algorithms with mini-batch of the size b̂ := 300. The result is
shown in Fig. 2 after 20 epochs. Fig. 2 shows similar performance between Hybrid-SGD-SL and
ASL and SGD2. Clearly, these theoretical variants of Algorithm 1 are slightly better than the
adaptive SGD variant (SGD2), where a careful step-size is used.

4.2 Binary classification involving nonconvex loss and Tikhonov’s reg-
ularizer

We consider the following binary classification problem studied in [29] involving nonconvex loss:

8



0 10 20 30

10
-5

10
0

Training Loss: w8a

0 10 20 30

10
0

10
2

Training Loss: rcv1_train.binary

0 10 20 30

10
-2

10
0

10
2

Training Loss: real-sim

0 10 20 30

10
-3

10
-2

10
-1

10
0

Norm of Gradient:  w8a

0 10 20 30

10
-1

10
0

10
1

Norm of Gradient:  rcv1_train.binary

0 10 20 30

10
-2

10
-1

10
0

Norm of Gradient:  real-sim

Figure 2: The training loss and gradient norms of (20): Mini-batch case b̂ > 1.

f? := min
x∈Rp

{
f(x) :=

1

n

n∑
i=1

`(a>i x, bi) +
λ

2
‖x‖2

}
, (21)

where ai ∈ Rp and bi ∈ {−1, 1} are given data for i = 1, · · · , n, λ > 0 is a regularization parameter,

and ` is a nonconvex loss of the forms: `(τ, s) =
(

1− 1
1+exp(−τs)

)2

(using in two-layer neural
networks). One can check that (21) satisfies Assumption 1.1 with L ≈ 0.15405 maxi ‖ai‖2 + λ.
We choose λ := 0.01, and test three variants of Algorithm 2: Hybrid-SGD-DL and compare them
with SpiderBoost, SVRG, and SVRG+. Due to space limit, we only plot one experiment in Fig. 3
after 20 epochs. Additional experiments can be found in Supplementary Document D.

As we can see from Fig. 3 that Algorithm 2 performs well and is slightly better than
SpiderBoost. Note that SpiderBoost simply uses SARAH estimator with constant stepsize η = 1

2L
but with mini-batch of the size b

√
nc. It is not surprise that SpiderBoost makes very good

progress to decrease the gradient norms. Both SVRG and SVRG+ perform much worse than
Hybrid-SGD-DL and SpiderBoost in this test, but SVRG+ is slightly better than SVRG. In our
methods, due to the aid of SARAH part, they also make similar progress as SpiderBoost but
using different step-sizes.

5 Conclusion
We have introduced a new hybrid SARAH-SGD estimator for the objective gradient of expectation
optimization problems. Under standard assumptions, we have shown that this estimator has
a better variance reduction property than SARAH. By exploiting such an estimator, we have
developed a new Hybrid-SGD algorithm, Algorithm 1, that has better complexity bounds than
state-of-the-art SGDs. Our algorithm works with both constant and adaptive step-sizes. We
have also studied its double-loop and mini-batch variants. We believe that our approach can be
extended to other choices of unbiased estimators, Hessian estimators for second-order stochastic
methods, and adaptive β.

A Appendix: Properties of the hybrid stochastic estimator
This supplementary document provides the full proof of all the results in the main text. First,
we need the following lemma in the sequel.

9



0 5 10 15 20

10
-10

10
0

Training Loss: w8a

0 5 10 15 20

10
-10

10
-5

10
0

Training Loss: rcv1_train.binary

0 5 10 15 20

10
-10

10
0

Training Loss: real-sim

0 5 10 15 20

10
-10

10
-5

Norm of Gradient:  w8a

0 5 10 15 20

10
-5

10
0

Norm of Gradient:  rcv1_train.binary

0 5 10 15 20

10
-10

10
-5

10
0

Norm of Gradient:  real-sim

Figure 3: The training loss and gradient norms of (21): Mini-batch case b̂ > 1.

Lemma A.1. Given L > 0 and ω ∈ (0, 1). Let {ηt}mt=0 be the sequence updated by

ηm :=
1

L
, and ηt :=

1

L+ L2
[
ωηt+1 + ω2ηt+2 + · · ·+ ω(m−t)ηm

] , (22)

for t = 0, · · · ,m− 1. Then

0 < η0 < η1 < · · · < ηm =
1

L
, and Σm :=

m∑
t=0

ηt ≥
(m+ 1)

√
1− ω

2L
. (23)

Proof. First, from (22) it is obvious to show that 0 < η0 < · · · < ηm−1 = 1
L(1+ω) < ηm = 1

L . At
the same time, since ω ∈ (0, 1), we have 1 ≥ ω ≥ ω2 ≥ · · · ≥ ωm. By Chebyshev’s sum inequality,
we have

(m− t)
(
ωηt+1 + ω2ηt+2 + · · ·+ ωm−tηm

)
≤
(∑m

j=t+1 ηi
) (
ω + ω2 + · · ·+ ωm−t

)
≤ ω

1−ω
(∑m

j=t+1 ηi
)
.

(24)

From the update (22), we also have
L2η0(ωη1 + ω2η2 + · · ·+ ωmηm) = 1− Lη0

L2η1(ωη2 + ω2η3 + · · ·+ ωm−1ηm) = 1− Lη1

· · · · · ·
L2ηm−1ωηm = 1− Lηm−1

0 = 1− Lηm.

(25)

Using (24) into (25), we get

ωL2

1−ωη0(η0 + η1 + · · ·+ ηm) ≥ m−mLη0 + ωL2

1−ωη
2
0

ωL2

1−ωη1(η0 + η1 + · · ·+ ηm) ≥ (m− 1)− (m− 1)Lη1 + ωL2

1−ω (η1η0 + η2
1)

· · · · · ·
ωL2

1−ωηm−1(η0 + η1 + · · ·+ ηm) ≥ 1− Lηm−1 + ωL2

1−ω (ηm−1η0 + · · ·+ η2
m−1)

ωL2

1−ωηm(η0 + η1 + · · ·+ ηm) ≥ 1− Lηm + ωL2

1−ω (ηmη0 + · · ·+ η2
m).

10



Let Σm :=
∑m
t=0 ηt and Sm :=

∑m
t=0 η

2
t . Summing up both sides of the above inequalities, we get

ωL2

1− ω
Σ2
m ≥

m2 +m+ 2

2
− L(mη0 + (m− 1)η1 + · · ·+ ηm−1 + ηm) +

ωL2

2(1− ω)

(
Sm + Σ2

m

)
.

Using again Chebyshev’s sum inequality, we have

mη0 + (m− 1)η1 + · · ·+ ηm−1 + ηm ≤
m2 +m+ 2

2(m+ 1)

(
m∑
t=0

ηt

)
=

(m2 +m+ 2)Σm
2(m+ 1)

.

Note that (m + 1)Sm ≥ Σ2
m by Cauchy-Schwarz’s inequality, which shows that Sm + Σ2

m ≥(
m+2
m+1

)
Σ2
m. Combining three last inequalities, we obtain the following quadratic inequation in Σm

mωL2

(1− ω)
Σ2
m + L(m2 +m+ 2)Σm − (m+ 1)(m2 +m+ 2) ≥ 0.

Solving this inequation with respect to Σm > 0, we obtain

Σm ≥ (1−ω)
[√

(m2+m+2)2+
4m(m+1)(m2+m+2)ω

1−ω −(m2+m+2)
]

2ωmL

= 2(m+1)

L

[
1+

√
1+

4m(m+1)ω

(1−ω)(m2+m+2)

]
≥ 2(m+1)

√
1−ω

L[
√

1−ω+
√

1+3ω]
since m(m+1)

m2+m+2 < 1

≥ 2(m+1)
√

1−ω
L(2+

√
3ω)

since
√

1 + 3ω +
√

1− ω ≤ 2 +
√

3ω.

Since ω ∈ (0, 1), we can overestimate this as Σm ≥ (m+1)
√

1−ω
2L , which proves (23).

1.1 The proof of Lemma 2.1: Properties of the hybrid SARAH esti-
mator

By taking the expectation of both sides in (4) and using the fact that ξt and ζt are independent,
we can easily obtain (5).

To prove (6), we first write

vt −∇f(xt) = βt−1(vt−1 −∇f(xt−1)) + βt−1(∇f(xt; ξt)−∇f(xt−1; ξt))

+ (1− βt−1)
[
ut −∇f(xt)

]
+ βt−1

[
∇f(xt−1)−∇f(xt)

]
.

In this case, we have

‖vt −∇f(xt)‖2 = β2
t−1‖vt−1 −∇f(xt−1)‖2 + β2

t−1‖∇f(xt; ξt)−∇f(xt−1; ξt)‖2

+ (1− βt−1)2‖ut −∇f(xt)‖2 + β2
t−1‖∇f(xt−1)−∇f(xt)‖2

+ 2β2
t−1(vt−1 −∇f(xt−1))>(∇f(xt; ξt)−∇f(xt−1; ξt))

+ 2β2
t−1(vt−1 −∇f(xt−1))>(∇f(xt−1)−∇f(xt))

+ 2βt−1(1− βt−1)(vt−1 −∇f(xt−1))>(ut −∇f(xt))

+ 2βt−1(1− βt−1)(∇f(xt; ξt)−∇f(xt−1; ξt))
>(ut −∇f(xt))

+ 2β2
t−1(∇f(xt; ξt)−∇f(xt−1; ξt))

>(∇f(xt−1)−∇f(xt))

+ 2βt−1(1− βt−1)(ut −∇f(xt))
>(∇f(xt−1)−∇f(xt)).

Let us first take expectation w.r.t. ξt conditioned on ζt to obtain

Eξt
[
‖vt −∇f(xt)‖2 | ζt

]
= β2

t−1‖vt−1 −∇f(xt−1)‖2 + β2
t−1Eξt

[
‖∇f(xt; ξt)−∇f(xt−1; ξt)‖2 | ζt

]
+ (1− βt−1)2‖ut −∇f(xt)‖2 − β2

t−1‖∇f(xt−1)−∇f(xt)‖2

+ 2βt−1(1− βt−1)(vt−1 −∇f(xt−1))>(ut −∇f(xt))

+ 2βt−1(1− βt−1)(∇f(xt)−∇f(xt−1))>(ut −∇f(xt))

+ 2βt−1(1− βt−1)(ut −∇f(xt))
>(∇f(xt−1)−∇f(xt)).

11



Now, taking the expectation over ζt, and noting that E(ξt,ζt) [·] = Eζt [Eξt [· | ζt]] and Eζt [ut −∇f(xt)] =
0, we get

E(ξt,ζt)

[
‖vt −∇f(xt)‖2

]
= β2

t−1‖vt−1 −∇f(xt−1)‖2 + β2
t−1Eξt

[
‖∇f(xt; ξt)−∇f(xt−1; ξt)‖2

]
+ (1− βt−1)2Eζt

[
‖ut −∇f(xt)‖2

]
− β2

t−1‖∇f(xt−1)−∇f(xt)‖2,

which is exactly (6). �

1.2 The proof of Lemma 2.2: Bound on the variance of the hybrid
estimator

We first upper bound (6) by using σ2
t := Eζt

[
‖ut −∇f(xt)‖2

]
and then taking the full expectation

over Ft := σ(v0, v1, · · · , vt) as

E
[
‖vt −∇f(xt)‖2

]
≤ β2

t−1E
[
‖vt−1 −∇f(xt−1)‖2

]
+ β2

t−1E
[
‖∇f(xt; ξt)−∇f(xt−1; ξt)‖2

]
+ (1− βt−1)2σ2

t

(2)
≤ β2

t−1E
[
‖vt−1 −∇f(xt−1)‖2

]
+ β2

t−1L
2E
[
‖xt − xt−1‖2

]
+ (1− βt−1)2σ2

t .

If we define a2
t := E

[
‖vt −∇f(xt)‖2

]
, then the above inequality can lead to

a2
t ≤ β2

t−1a
2
t−1 + β2

t−1L
2E
[
‖xt − xt−1‖2

]
+ (1− βt−1)2σ2

t .

Denote b2t−1 := E
[
‖xt − xt−1‖2

]
. Then, we have from the last inequality that

a2
t ≤ β2

t−1a
2
t−1 + L2β2

t−1b
2
t−1 + (1− βt−1)2σ2

t .

By induction, this inequality implies

a2
t ≤ β2

t−1a
2
t−1 + L2β2

t−1b
2
t−1 + (1− βt−1)2σ2

t

≤ β2
t−1

[
β2
t−2a

2
t−2 + L2β2

t−2b
2
t−2 + (1− βt−2)2σ2

]
+ L2β2

t−1b
2
t−1 + (1− βt−1)2σ2

t

= β2
t−1β

2
t−2a

2
t−2 + L2β2

t−1β
2
t−2b

2
t−2 + L2β2

t−1b
2
t−1 +

[
(1− βt−1)2σ2

t + β2
t−1(1− βt−2)2σ2

t−1

]
≤ β2

t−1β
2
t−2

[
β2
t−3a

2
t−3 + L2β2

t−3b
2
t−3 + (1− βt−3)2σ2

t−2

]
+ L2β2

t−1β
2
t−2b

2
t−2 + L2β2

t−1b
2
t−1 +

[
(1− βt−1)2σ2

t + β2
t−1(1− βt−2)2σ2

t−1

]
= β2

t−1β
2
t−2β

2
t−3a

2
t−3 + L2β2

t−1β
2
t−2β

2
t−3b

2
t−3 + L2β2

t−1β
2
t−2b

2
t−2

+ L2β2
t−1b

2
t−1 +

[
(1− βt−1)2σ2

t + β2
t−1(1− βt−2)2σ2

t−1 + β2
t−1β

2
t−2(1− βt−3)2σ2

t−2

]
· · · · · ·
≤ (β2

t−1 · · ·β2
0)a2

0 + L2(β2
t−1 · · ·β2

0)b20 + L2(β2
t−1 · · ·β2

1)b21 + · · ·+ L2β2
t−1b

2
t−1

+
[
(1− βt−1)2σ2

t + β2
t−1(1− βt−2)2σ2

t−1 + β2
t−1β

2
t−2(1− βt−3)2σ2

t−2 + · · ·
+ β2

t−1β
2
t−2 · · ·β2

1(1− β0)2σ2
1

]
.

Here, we use a convention that
∏t
i=t+1 β

2
i = 1. As a result, it can be rewritten in a compact

form as

a2
t ≤

( t∏
i=1

β2
i−1

)
a2

0 + L2
t−1∑
i=0

( t∏
j=i+1

β2
j−1

)
b2i +

t−1∑
i=0

( t∏
j=i+2

β2
j−1

)
(1− βi)2σ2

i+1. (26)

Define ωt :=
∏t
i=1 β

2
i−1, ωi,t :=

∏t
j=i+1 β

2
j−1, and St :=

∑t−1
i=0 si =

∑t−1
i=0

(∏t
j=i+2 β

2
j−1

)
(1 −

βi)
2σ2
i+1 with si := (1− βi)2σ2

i+1

(∏t
j=i+2 β

2
j−1

)
. Then, we can rewrite (26) as

a2
t ≤ ωta2

0 + L2
t−1∑
i=0

ωi,tb
2
i + St,

which is exactly (7). �

12



B Appendix: Convergence analysis of Algorithm 1 and Al-
gorithm 2

We provide the full convergence analysis for Algorithm 1 and Algorithm 2 in the single-sample
case.

2.1 The proof of Lemma B.1: One-iteration analysis
The following lemma provides a key estimate for convergence analysis of Algorithm 1.

Lemma B.1. Let {xt} be the sequence generated by Algorithm 1. Then, under Assumption 1.1,
we have the following estimate:

E [f(xm+1)] ≤ E [f(x0)]− 1

2

m∑
t=0

ηtE
[
‖∇f(xt)‖2

]
+

1

2

( m∑
t=0

ηtωt

)
E
[
‖v0 −∇f(x0)‖2

]
+

1

2

( m∑
t=0

ηtSt

)
+

1

2
Tm,

(27)

where

Tm := L2
m∑
t=1

ηt

t−1∑
i=0

ωi,tη
2
i E
[
‖vi‖2

]
−

m∑
t=0

(
ηt − Lη2

t

)
E
[
‖vt‖2

]
, (28)

and ωt, ωi,t, and St are defined in Lemma 2.2.

Proof. First, from the L-smoothness of f , we have

f(xt+1) ≤ f(xt)− ηt〈∇f(xt), vt〉+
Lη2t

2 ‖vt‖
2

= f(xt)− ηt
2 ‖∇f(xt)‖2 −

(
ηt
2 −

Lη2t
2

)
‖vt‖2 + ηt

2 ‖vt −∇f(xt)‖2.

Taking the expectation over the randomness (ξt, ζt) of this estimate, we obtain

E(ξt,ζt) [f(xt+1)] ≤ f(xt)− ηt
2 E(ξt,ζt)

[
‖∇f(xt)‖2

]
− ηt

2

(
1− Lηt

)
E(ξt,ζt)

[
‖vt‖2

]
+ ηt

2 E(ξt,ζt)

[
‖vt −∇f(xt)‖2

]
.

Taking the full expectation over the entire history up to the t-th iteration, and then using (7)
and noting that xt − xt−1 = −ηt−1vt−1, we obtain

E [f(xt+1)] ≤ E [f(xt)]− ηt
2 E
[
‖∇f(xt)‖2

]
− ηt

2

(
1− Lηt

)
q2
t + ηt

2 a
2
t

≤ E [f(xt)]− ηt
2 E
[
‖∇f(xt)‖2

]
− ηt

2

(
1− Lηt

)
q2
t

+ ηt
2

[
ωta

2
0 + L2

∑t−1
i=0 ωi,tη

2
i q

2
i + St

]
,

(29)

where q2
t := E

[
‖vt‖2

]
and a2

t := E
[
‖vt −∇f(xt)‖2

]
. Here, we use b2t−1 := E

[
‖xt − xt−1‖2

]
=

η2
t−1E

[
‖vt−1‖2

]
= η2

t−1q
2
t−1 in the last inequality.

Summing up (29) from t = 0 to t = m, we obtain

E [f(xm+1)] ≤ E [f(x0)]−
∑m
t=0

ηt
2 E
[
‖∇f(xt)‖2

]
−
∑m
t=0

ηt
2

(
1− Lηt

)
q2
t

+ 1
2 (
∑m
t=0 ωtηt) a

2
0 + 1

2 (
∑m
t=0 ηtSt) + L2

2

∑m
t=0 ηt

∑t−1
i=0 ωi,tη

2
i q

2
i .

(30)

Let us define Tm as in (28), i.e.:

Tm := L2
m∑
t=1

ηt

t−1∑
i=0

ωi,tη
2
i q

2
i −

m∑
t=0

ηt
(
1− Lηt

)
q2
t .

Then, we obtain from (30) the estimate (27).

13



2.2 The proof of Theorem 3.1: Single-loop with constant step-size
We analyze the case βt = β ∈ (0, 1) fixed and the step-size ηt = η > 0 fixed. From Lemma 2.2,
we have ωt = β2t, ωi,t = β2(t−i), and

st :=
∑t−1
i=0

(∏t
j=i+2 β

2
j−1

)
(1− βi)2

= (1− β)2
[
1 + β2 + β4 + · · ·+ β2(t−1)

]
= (1− β)2

[
1−β2t

1−β2

]
< 1−β

1+β .

In this case, by convention that ω0 = 1, we have

m∑
t=0

st <
(1− β)(m+ 1)

1 + β
and

m∑
t=0

ωt = 1 +
β2(1− β2m)

1− β2
=

1− β2(m+1)

1− β2
<

1

1− β2
. (31)

Now, to bound the quantity Tm defined by (28), we note that

m∑
t=1

t−1∑
i=0

β2(t−i)q2
i =

0∑
i=0

β2(1−i)q2
i +

1∑
i=0

β2(2−i)q2
i +

2∑
i=0

β2(3−i)q2
i + · · ·+

m−1∑
i=0

β2(m−i)q2
i

= β2q2
0 +

[
β4q2

0 + β2q2
1

]
+
[
β6q2

0 + β4q2
1 + β2q2

0

]
+ · · ·

+
[
β2mq2

0 + β2(m−1)q1 + · · ·+ β2q2
m−1

]
= β2

[
1 + β2 + · · ·+ β2(m−1)

]
q2
0 + β2

[
1 + β2 + · · ·+ β2(m−2)

]
q2
1 + · · ·

+ β2
[
1 + β2

]
q2
m−2 + β2q2

m−1

= β2

1−β2

[
(1− β2m)q2

0 + (1− β2(m−1))q2
1 + · · ·+ (1− β2)q2

m−1

]
.

Using this expression, we can write Tm from (28) as

Tm = η
[
β2(1−β2m)L2η2

1−β2 − (1− Lη)
]
q2
0 + η

[
β2(1−β2(m−1))L2η2

1−β2 − (1− Lη)
]
q2
1 + · · ·

+ η
[
β2(1−β2)L2η2

1−β2 − (1− Lη)
]
q2
m−1 − η(1− Lη)q2

m.
(32)

To guarantee Tm ≤ 0, from (32), we need to choose

L2η2β2(1−β2m)
1−β2 − (1− Lη) ≤ 0

L2η2β2(1−β2(m−1))
1−β2 − (1− Lη) ≤ 0

· · · · · ·
L2η2β2(1−β2)

1−β2 − (1− Lη) ≤ 0

−(1− Lη) ≤ 0.

(33)

Clearly, since 1 − β2(m−i) ≥ 1 − β2 for i = 0, · · · ,m − 1, if we define α2
m := β2(1−β2m)

1−β2 , then
the condition (33) holds if L2η2α2

m − (1 − Lη) ≤ 0. By tightening this condition, we obtain a
quadratic equation L2η2α2

m − (1− Lη) = 0 in η, which leads to

η :=
2

L(
√

1 + 4α2
m + 1)

with α2
m :=

β2(1− β2m)

1− β2
. (34)

14



Note that since α2
m ≤

β2

1−β2 , we have η ≥ η :=
2
√

1−β2

L(
√

1−β2+
√

1+3β2)
. In that case, by using (31)

and (33), (27) reduces to

E [f(xm+1)]
(31)
≤ E [f(x0)]− η

2

m∑
t=0

E
[
‖∇f(xt)‖2

]
+ η(1−β2(m+1))

2(1−β2) E
[
‖v0 −∇f(x0)‖2

]
+
[

(1−β)(m+1)
1+β

]
ησ2

2 .

(35)

Note that E
[
‖v0 −∇f(x0)‖2

]
≤ σ2

b and E [f(xm+1)] ≥ f?, we can further bound (35) as

η

2

m∑
t=0

E
[
‖∇f(xt)‖2

]
≤ E [f(x0)]− f? +

ησ2

2(1 + β)

[ 1

(1− β)b
+ (1− β)(m+ 1)

]
.

Multiplying both sides of this inequality by 2
η(m+1) , and then using the lower bound of η from

(34), we obtain

1
m+1

m∑
t=0

E
[
‖∇f(xt)‖2

]
≤ 2

η(m+1)

[
E [f(x0)]− f?

]
+ σ2

(1+β)

[
1

(1−β)b(m+1) + (1− β)
]

≤ L
(m+1)

(√
1−β2+

√
1+3β2√

1−β2

)[
E [f(x0)]− f?

]
+ σ2

(1+β)

[
1

(1−β)b(m+1) + (1− β)
]
.

(36)

Let us choose β := 1− c1√
b(m+1)

for some 0 < c1 <
√
b(m+ 1). In this case, the last two terms

of the right-hand side of (36) become

1

(1− β)b(m+ 1)
+ (1− β) =

(
c1 +

1

c1

)
1√

b(m+ 1)
.

With this choice of β, (36) leads to

1
m+1

m∑
t=0

E
[
‖∇f(xt)‖2

]
≤ L

(m+1)

(√
1−β2+

√
1+3β2√

1−β2

)[
E [f(x0)]− f?

]
+
(
c1 + 1

c1

)
σ2

(1+β)
√
b(m+1)

.

(37)

(a) Since β = 1− c1√
b(m+1)

< 1 and c1 <
√
b(m+ 1), we have

1−β2 = 1−
(

1− c1√
b(m+ 1)

)2

=
2c1√

b(m+ 1)
− c21
b(m+ 1)

=
2c1
√
b(m+ 1)− c21
b(m+ 1)

>
c1√

b(m+ 1)
,

and
√

1− β2 +
√

1 + 3β2 ≤ 1 +
√

1 + 3β2 ≤ 3. On the other hand, from (34), we have

η ≥ η =
2
√

1− β2

L(
√

1− β2 +
√

1 + 3β2)
≥

2
√
c1

3L
[
b(m+ 1)

]1/4 . (38)

This proves (a).
Let us define define f0 := f(x0). Then, using β < 1 and (38) into (37), we get

1

m+ 1

m∑
t=0

E
[
‖∇f(xt)‖2

]
≤ 3Lb1/4
√
c1(m+ 1)3/4

[
f0 − f?

]
+

(
c1 +

1

c1

)
σ2√

b(m+ 1)
.

15



(b) Let us choose b := c2σ
8/3(m+ 1)1/3 for some constant c2 > 0. Then the last estimate becomes

1

m+ 1

m∑
t=0

E
[
‖∇f(xt)‖2

]
≤ σ2/3

(m+ 1)2/3

[
3Lc

1/4
2√
c1

[
f0 − f?

]
+

(
c1 +

1

c1

)
1
√
c2

]
. (39)

To guarantee 1
m+1

m∑
t=0

E
[
‖∇f(xt)‖2

]
≤ ε2, from (39) we need to set

σ2/3

(m+ 1)2/3

[
3Lc

1/4
2√
c1

[
f0 − f?

]
+

(
c1 +

1

c1

)
1
√
c2

]
≤ ε2.

This leads to m+ 1 ≥ σ
ε3

[
3Lc

1/4
2√
c1

[
f0 − f?

]
+
(
c1 + 1

c1

)
1√
c2

]3/2

. Therefore, we can choose m as

shown in (10).
Finally, if c1 = 1, then the number of stochastic gradient evaluations is Tge is

Tge = b+ 3m = c2σ
8/3(m+ 1)1/3 + 3σ

ε3

[
3Lc

1/4
2

[
f0 − f?

]
+ 2√

c2

]3/2
= c2σ

3

ε

[
3Lc

1/4
2

[
f0 − f?

]
+ 2√

c2

]1/2
+ 3σ

ε3

[
3Lc

1/4
2

[
f0 − f?

]
+ 2√

c2

]3/2
= σ3

ε

[
3Lc

9/4
2

[
f0 − f?

]
+ c

3/2
2

]1/2
+ 3σ

ε3

[
3Lc

1/4
2

[
f0 − f?

]
+ 2√

c2

]3/2
= O

(
σ
ε3 + σ3

ε

)
,

which proves (11). �

2.3 The proof of Theorem 3.2: Single-loop with adaptive step-size
First, from Lemma B.1, we have

E [f(xm+1)] ≤ E [f(x0)]− 1

2

m∑
t=0

ηtE
[
‖∇f(xt)‖2

]
+

1

2

( m∑
t=0

ηtωt

)
E
[
‖v0 −∇f(x0)‖2

]
+

1

2

( m∑
t=0

ηtSt

)
+

1

2
Tm,

(40)

where

Tm := L2
m∑
t=1

ηt

t−1∑
i=0

ωi,tη
2
i E
[
‖vi‖2

]
−

m∑
t=0

(
ηt − Lη2

t

)
E
[
‖vt‖2

]
, (41)

and ωt, ωi,t, and st are defined in Lemma 2.2.
If we fix βt = β ∈ (0, 1), then we can show that ωt = β2t, ωi,t = β2(t−i), and st =

(1− β)2
[

1−β2t

1−β2

]
< 1−β

1+β as in the proof of Theorem 3.1.

16



Now, let u2
i := E

[
‖vi‖2

]
. To bound the quantity Tm defined by (28), we note that

m∑
t=1

ηt

t−1∑
i=0

β2(t−i)η2
i u

2
i = η1

0∑
i=0

β2(1−i)η2
i u

2
i + η2

1∑
i=0

β2(2−i)η2
i u

2
i

+ η3

2∑
i=0

β2(3−i)η2
i u

2
i + · · ·+ ηm

m−1∑
i=0

β2(m−i)η2
i u

2
i

= β2η1η
2
0u

2
0 + η2

[
β4η2

0u
2
0 + β2η2

1u
2
1

]
+ η3

[
β6η2

2u
2
0 + β4η2

1u
2
1 + β2η2

2u
2
2

]
+ · · ·

+ ηm
[
β2mη2

0u
2
0 + β2(m−1)η2

1u
2
1 + · · ·+ β2η2

m−1u
2
m−1

]
= β2η2

0

[
η1 + β2η2 + · · ·+ β2(m−1)ηm

]
u2

0

+ β2η2
1

[
η2 + β2η3 + · · ·+ β2(m−2)ηm

]
u2

1 + · · ·
+ β2η2

m−2

[
ηm−1 + β2ηm

]
u2
m−2 + β2η2

m−1ηmu
2
m−1.

Using this expression, we can write Tm from (28) as

Tm = η0

[
L2β2η0

[
η1 + β2η2 + · · ·+ β2(m−1)ηm

]
− (1− Lη0)

]
u2

0

+ η1

[
L2β2η1

[
η2 + β2η3 + · · ·+ β2(m−2)ηm

]
− (1− Lη1)

]
+ · · ·

+ ηm−1

[
L2β2ηm−1ηm − (1− Lηm−1)

]
u2
m−1 − ηm(1− Lηm)u2

m.

To guarantee Tm ≤ 0, from the last expression of Tm, we can impose the following condition:

L2β2η0

[
η1 + β2η2 + · · ·+ β2(m−1)ηm

]
− (1− Lη0) = 0

L2β2η1

[
η2 + β2η3 + · · ·+ β2(m−2)ηm

]
− (1− Lη1) = 0

· · · · · ·
L2β2ηm−1ηm − (1− Lηm−1) = 0

−(1− Lηm) = 0.

(42)

The condition (42) leads to the following update of ηt:

ηm :=
1

L
, and ηt :=

1

L+ L2
[
β2ηt+1 + β4ηt+2 + · · ·+ β2(m−t)ηm

] , t = 0, · · · ,m− 1,

which is exactly (12).

Next, note that β2 =
(

1 − c1√
b(m+1)

)2

= 1 − 2c1√
b(m+1)

+
c21

b(m+1) . Therefore, 1 − β2 =

2c1√
b(m+1)

− c21
b(m+1) ≥

c1√
b(m+1)

, which implies
√

1− β2 ≥
√
c1

(b(m+1))1/4
. Using

√
1− ω =

√
1− β2 ≥

√
c1

(b(m+1))1/4
into (23) of Lemma A.1, we can show that Σm ≥

√
c1(m+1)3/4

2Lb1/4
as in the first statement

(a) of Theorem 3.2.
Note that ωt = β2t, by the Chebyshev sum inequality, we have

m∑
t=0

ωtηt =

m∑
t=0

β2tηt ≤
Σm

(m+ 1)
(1 + β2 + · · ·+ β2m) ≤ Σm

(m+ 1)(1− β2)
.

Utilizing this estimate, E
[
‖v0 −∇f(x0)‖2

]
≤ σ2

b , and St ≤
(1−β)σ2

1+β into (40), and noting that
Tm ≤ 0, we have

1

2

m∑
t=0

ηtE
[
‖∇f(xt)‖2

]
≤ f(x0)− E [f(xm+1)] +

Σmσ
2

2(1− β2)b(m+ 1)
+

(1− β)σ2

2(1 + β)
Σm.

17



Since E [f(xm+1)] ≥ f?, using this into the last estimate, and multiplying the result by 2
Σm

, we
obtain

1

Σm

m∑
t=0

ηtE
[
‖∇f(xt)‖2

]
≤ 2

Σm
[f(x0)− f?] +

σ2

(1 + β)

[
1

b(m+ 1)(1− β)
+ (1− β)

]
. (43)

Since
[

1
b(m+1)(1−β) + (1− β)

]
=
(
c1 + 1

c1

)
1√

b(m+1)
for β = 1− c1√

b(m+1)
, (43) leads to

1

Σm

m∑
t=0

ηtE
[
‖∇f(xt)‖2

]
≤ 4Lb1/4
√
c1(m+ 1)3/4

[f(x0)− f?] +

(
c1 +

1

c1

)
σ2√

b(m+ 1)
. (44)

The second statement (b) of Theorem 3.2 is proved similarly as in Theorem 3.1 using (44), and
we omit the details. �

2.4 The proof of Theorem 3.3: Double-loop with constant step-size
Similar to the proof of (37) in Theorem 3.1, we have

m∑
t=0

E
[
‖∇f(x

(s)
t )‖2

]
≤ 2

η

[
E
[
f(x

(s)
0 )
]
− E

[
f(x

(s)
m+1)

] ]
+

2(m+ 1)σ2√
b(m+ 1)

, (45)

where we use the superscript s to indicate the stage s in Algorithm 2. Summing up this inequality
from s = 1 to s = S, and then multiplying the result by 1

(m+1)S and using E
[
f(x

(S)
m+1)

]
≥ f? >

−∞, we get

1
S(m+1)

S∑
s=1

m∑
t=0

E
[
‖∇f(x

(s)
t )‖2

]
≤ 2

ηS(m+1)

[
f(x̃0)− f?

]
+ 2σ2√

b(m+1)

≤ 3Lb1/4

S(m+1)3/4

[
f(x̃0)− f?

]
+ 2σ2√

b(m+1)
.

(46)

Here, we use the fact that η ≥ 2

3L
[
b(m+1)

]1/4 from (38) in the last inequality.

If we choose b := c1σ
2

ε2 and m+ 1 := c2σ
2

ε2 for some constants c1 > 0 and c2 > 0 and c1c2 > 4,

then, from (46), to guarantee 1
S(m+1)

S∑
s=1

m∑
t=0

E
[
‖∇f(x

(s)
t )‖2

]
≤ ε2, we require

3Lb1/4

S(m+ 1)3/4

[
f0 − f?

]
+

2σ2√
b(m+ 1)

=
3Lc

1/4
1 σ1/2

ε1/2
· ε3/2

Sc
3/4
2 σ3/2

[
f0 − f?

]
+

2σ2ε2

σ2
√
c1c2

= ε2

⇔ 3Lc
1/4
1 ε

Sc
3/4
2 σ

[
f0 − f?

]
=

(
1− 2
√
c1c2

)
ε2

⇔ S =
3Lc

1/4
1

[
f0 − f?

]
c
3/4
2 σ

(
1− 2√

c1c2

)
ε
.

Consequently, the total complexity is

Tge := (b+ 3m)S = (c1 + 3c2)σ
2

ε2
3Lc

1/4
1

[
f0−f?

]
c
3/4
2 σ

(
1− 2√

c1c2

)
ε

=
3L(c1+3c2)c

1/4
1

[
f0−f?

]
σ

c
3/4
2

(
1− 2√

c1c2

)
ε3

= O
(
σ
ε3

)
.

Since we choose b := c1σ
2

ε2 , the final complexity is O
(

max
{
σ
ε3 ,

σ2

ε2

})
, where other constants

independent of σ and ε are hidden. �

18



C Appendix: The convergence analysis of the mini-batch
variants

In this supplementary document, we provide a full analysis of the mini-batch variants of Algo-
rithm 1 and Algorithm 2.

3.1 Variance bound of mini-batch hybrid estimators
For v̂t defined by (16), we have the following property.

Lemma C.1. The mini-batch gradient estimator v̂t defined by (16) satisfies

E(Bt,B̂t)

[
‖v̂t −∇f(xt)‖2

]
= β2

t−1‖v̂t−1 −∇f(xt−1)‖2 − ρβ2
t−1‖∇f(xt−1)−∇f(xt)‖2

+ ρβ2
t−1Eξ

[
‖∇f(xt; ξ)−∇f(xt−1; ξ)‖2

]
+ (1− βt−1)2ρσ2,

(47)

where ρ = ρ(b̂) := n−b̂
(n−1)b̂

if n := |Ω| is finite, and ρ(b̂) := 1
b̂
, otherwise.

Proof. Let v̂t be defined by (16). Let zt := 1
bt

∑
i∈Bt

(∇fξi(xt) − ∇fξi(xt−1)), z̄ := ∇f(xt) −
∇f(xt−1), ∆t := v̂t −∇f(xt), and ∆ut := ut −∇f(xt). Clearly, we have

E [zt] = z̄ and E [∆ut] = 0.

Moreover, we can rewrite v̂t in (16) as

∆t = βt−1∆t−1 + βt−1zt + (1− βt−1)∆ut − βt−1z̄.

Therefore, using these two expressions, we can derive

E
[
‖∆t‖2

]
= β2

t−1‖∆t−1‖2 + β2
t−1E

[
‖zt‖2

]
+ (1− βt−1)2E

[
‖∆ut‖2

]
+ β2

t−1‖z̄‖2

+ 2β2
t−1〈∆t−1,E [zt]〉+ 2βt−1(1− βt−1)〈∆t−1,E [∆ut]〉 − 2β2

t−1〈∆t−1, z̄〉
+ 2βt−1(1− βt−1)E [〈zt,∆ut〉]− 2β2

t−1〈E [zt] , z̄〉 − 2βt−1(1− βt−1)〈E [∆ut] , z̄〉
= β2

t−1‖∆t−1‖2 + β2
t−1E

[
‖zt‖2

]
+ (1− βt−1)2E

[
‖∆ut‖2

]
− β2

t−1‖z̄‖2.
(48)

For the finite-sum case, after a few elementary calculations, we can show that

E
[
‖zt‖2

]
=
n(bt − 1)

(n− 1)bt
‖z̄‖2 +

(n− bt)
(n− 1)bt

Eξ
[
‖∇fξ(xt)−∇fξ(xt−1)‖2

]
.

For the expectation case, we have

E
[
‖zt‖2

]
=
(
1− 1

bt

)
‖z̄‖2 +

1

bt
Eξ
[
‖∇fξ(xt)−∇fξ(xt−1)‖2

]
.

In addition, under Assumption 1.1(c), we have E
[
‖∆ut‖2

]
≤ ρσ2.

Substituting one of the two last expressions and the bound of E
[
‖∆ut‖2

]
into (48), we get

(47).

The following analysis is given under fixed mini-batch sizes when we choose b̂t = b̃t = b̂.
Similar to Lemma 2.2, we can bound the variance E

[
‖v̂t −∇f(xt)‖2

]
of the mini-batch hybrid

estimator v̂t from (16) in the following lemma.

Lemma C.2. Assume that f(·, ·) is L-smooth and ut is an SGD estimator, v̂ is given in (16), Bt
and B̂t are mini-batches of the size b̂. Then, we have the following upper bound on the variance
E
[
‖v̂t −∇f(xt)‖2

]
:

E
[
‖v̂t −∇f(xt)‖2

]
≤ ωtE

[
‖v̂0 −∇f(x0)‖2

]
+ L2ρ

t−1∑
i=0

ωi,tE
[
‖xi+1 − xi‖2

]
+ ρSt, (49)

19



where the expectation is taking over all the randomness Ft := σ(v0, v1, · · · , vt), ωt :=
∏t
i=1 β

2
i−1,

ωi,t :=
∏t
j=i+1 β

2
j−1 for i = 0, · · · , t, and St :=

∑t−1
i=0

(∏t
j=i+2 β

2
j−1

)
(1 − βi)

2σ for t ≥ 0.

ρ = n−b̃
b̃(n−1)

if |Ω| is finite and ρ = 1
b̃
otherwise.

Proof. From Lemma C.1, taking the expectation with respect to Ft := σ(v0, v1, · · · , vt), we have

E
[
‖v̂t −∇f(xt)‖2

]
≤ β2

t−1E
[
‖v̂t−1 −∇f(xt−1)‖2

]
+ L2ρβ2

t−1E
[
‖xt − xt−1‖2

]
+ ρ(1− βt−1)2σ2.

Let a2
t := E

[
‖v̂t −∇f(xt)‖2

]
and r2

t = E
[
‖xt+1 − xt‖2

]
. By following inductive step as in the

proof of Lemma 2.2, we obtain

a2
t ≤

(
β2
t−1 · · ·β2

0

)
a2

0 + L2ρ
(
β2
t−1 · · ·β2

0

)
r2
0 + · · ·+ L2ρβ2

t−1r
2
t−1

+ ρ
[(
β2
t−1 · · ·β2

1

)
(1− β0)2 + · · ·+ (1− βt−1)2

]
σ2.

Using the definition of ωt, ωi,t, and St in Lemma 2.2, the previous inequality becomes

a2
t ≤ ωta2

0 + L2ρ

t−1∑
i=0

ωi,tr
2
i + ρSt,

which is the same as (49).

3.2 The proof of Corollary 3.1: Single loop with constant step-size
and mini-batches

Using Lemma C.2 and following the same path of proof of Lemma B.1, we can show that

E [f(xm+1] ≤ E [f(x0)]−
m∑
t=0

η

2
E
[
‖∇f(xt)‖2

]
+
η

2

(
m∑
t=0

ωt

)
E
[
‖v̂0 −∇f(x0)‖2

]
+ ρη

2

m∑
t=0

St +
1

2
T̂m,

(50)

where

T̂m := ρL2η3
m∑
t=0

t−1∑
i=0

ωi,tE
[
‖v̂i‖2

]
− η

m∑
t=0

(
1− Lη

)
E
[
‖v̂t‖2

]
.

Clearly, we can rewrite T̂m as

T̂m = η
[β2(1− β2m)L2η2ρ

1− β2
− (1− Lη)

]
q2
0

+η
[
β2(1−β2(m−1))L2η2ρ

1−β2 − (1− Lη)
]
q2
1 + · · ·

+ η
[β2(1− β2)L2η2ρ

1− β2
− (1− Lη)

]
q2
m−1 − η(1− Lη)q2

m,

where q2
t := E

[
‖v̂t‖2

]
. To guarantee T̂m ≤ 0, we need to have

L2η2ρβ2(1− β2m)

1− β2
− (1− Lη) ≤ 0

L2η2ρβ2(1− β2(m−1))

1− β2
− (1− Lη) ≤ 0

· · · · · ·
L2η2ρβ2(1− β2)

1− β2
− (1− Lη) ≤ 0

−(1− Lη) ≤ 0.

20



Let α2
m := β2(1−β2m)

1−β2 . Since α2
1 < α2

2 < · · · < α2
m, the last condition holds if L2η2ρα2

m−(1−Lη) ≤
0. By tightening this condition, we obtain

η :=
2

L
(

1 +
√

1 + 4ρα2
m

) with α2
m :=

β2(1− β2m)

1− β2
,

which is exactly (17). Since α2
m ≤

β2

1−β2 , we have η ≥ η :=
2
√

1−β2

L(
√

1−β2+
√

1+β2(4ρ−1))
.

Next, we can reuse the following estimates as in the proof of Theorem 3.1:
m∑
t=0

St ≤
σ2(1− β)(m+ 1)

1 + β
m∑
t=0

ωt =
1− β2(m+1)

1− β2
≤ 1

1− β2
.

Combining these estimate into (50) and notting that T̂m ≤ 0 and E
[
‖v0 −∇f(x0)‖2

]
≤ σ2

b , we
can show that

E [f(xm+1)]
(31)
≤ E [f(x0)]− η

2

m∑
t=0

E
[
‖∇f(xt)‖2

]
+ ησ2

2(1+β)

[
1

(1−β)b + ρ(1− β)(m+ 1)
]
.

(51)

Note that E [f(xm+1)] ≥ f? > −∞, (51) can be rewritten as

η

2

m∑
t=0

E
[
‖∇f(xt)‖2

]
≤ E [f(x0)]− f? +

ησ2

2(1 + β)

[ 1

(1− β)b
+ ρ(1− β)(m+ 1)

]
. (52)

If we choose β := 1− c1√
ρ̂b(m+1)

for any 0 < c1 <
√
b(m+ 1) such that

1

(1− β)b(m+ 1)
+ ρ(1− β) =

(
c1 +

1

c1

)√
ρ

b(m+ 1)
,

then (52) leads to

1
m+1

m∑
t=0

E
[
‖∇f(xt)‖2

]
≤ L

(m+1)

(√
1−β2+

√
1+β2(4ρ−1)√

1−β2

)[
E [f(x0)]− f?

]
+
(
c1 + 1

c1

)
σ2

(1+β)

√
ρ

b(m+1) .

(53)

Since β = 1− c1√
ρb(m+1)

< 1 and if we choose b, b̂, and m such that ρb(m+ 1) > c21, we have

1− β2 = 1−
(

1− c1√
ρb(m+1)

)2

= 2c1√
ρb(m+1)

− c21
ρb(m+1) =

2c1
√
ρb(m+1)−c21
ρb(m+1) > 2c1√

ρb(m+1)
,

and
√

1− β2 +
√

1 + β2(4ρ− 1) ≤ 1 +
√

1 + 3β2 ≤ 3 since ρ ≤ 1. Therefore, we can bound η as

η ≥ η ≥ 2c1

3L
[
ρb(m+ 1)

]1/4 .
Therefore, the inequality (53) can be rewritten as

1
m+1

m∑
t=0

E
[
‖∇f(xt)‖2

]
≤ 3L(ρb)1/4

2c1(m+1)3/4
(E [f(x0)]− f?) +

(
c1 + 1

c1

)
σ2

(1+β)

√
ρ

b(m+1) .

≤ 3L(ρb)1/4

2c1(m+1)3/4
(E [f(x0)]− f?) +

(
c1 + 1

c1

)
σ2

2

√
ρ

b(m+1) .

21



Let f0 := E [f(x0)]. We can write the bound as

1

m+ 1

m∑
t=0

E
[
‖∇f(xt)‖2

]
≤ 3L(ρb)1/4

2c1(m+ 1)3/4

(
f0 − f?

)
+

(
c1 +

1

c1

)
σ2

2

√
ρ

b(m+ 1)
.

Let us choose b := c2σ
8/3(ρ(m+ 1))1/3 for some c2 > 0. Then, the last inequality leads to

1

m+ 1

m∑
t=0

E
[
‖∇f(xt)‖2

]
≤ ρ1/3σ2/3

(m+ 1)2/3

[
3Lc

1/4
2

2c1

(
f0 − f?

)
+

(
c1 +

1

c1

)
1

2
√
c2

]
. (54)

From (54), to guarantee E
[
‖∇f(x̃m)‖2

]
≤ ε2, we need to choose

ρ1/3σ2/3

(m+ 1)2/3

[
3Lc

1/4
2

2c1

(
f0 − f?

)
+

(
c1 +

1

c1

)
1

2
√
c2

]
≤ ε2,

which leads to

m+ 1 ≥ ρ1/2σ

ε3

[
3Lc

1/4
2

2c1

(
f0 − f?

)
+

(
c1 +

1

c1

)
1

2
√
c2

]3/2

.

Hence, we can choose m as in (18).
Finally, let c1 = 1. Then the number of stochastic gradient evaluations Tge is

Tge = b+ 3b̂m ≤ b+ 3(m+1)
ρ

≤ c2σ8/3 [ρ(m+ 1)]
1/3

+ 3σ
ρ1/2ε3

[
3Lc

1/4
2

2c1

(
f0 − f?

)
+ 1√

c2

]3/2

≤ ρ1/2σ3

ε

[
3Lc

9/4
2

2c1

(
f0 − f?

)
+ c

3/2
2

]1/2

+ 3σ
ρ1/2ε3

[
3Lc

1/4
2

2c1

(
f0 − f?

)
+ 1√

c2

]3/2

,

which proves (19), where ρ ≤ 1
b̂
if |Ω| is infinite and ρ := n−b̂

b̂(n−1)
if |Ω| is finite. In particular, if

|Ω| is infinite and we choose ρ :=
c23
σ2ε2 for some c3 ≤ σε, then

Tge =
c3σ

2

ε2

[
3Lc

9/4
2

2c1

(
f0 − f?

)
+ c

3/2
2

]1/2

+
3σ2

c3ε2

[
3Lc

1/4
2

2c1

(
f0 − f?

)
+

1
√
c2

]3/2

.

Hence, we obtain Tge = O
((
c3 + 1

c3

)
σ2

ε2

)
. �

3.3 The mini-batch variant of Algorithm 2 and its complexity
Let us consider a mini-batch variant of Algorithm 2. Similar to Theorem 3.3, we can prove the
following result.

Corollary C.1. Let {x(s)
t }s=1→S

t=0→m be the sequence generated by the mini-batch variant of Algo-
rithm 2 using constant step-size η defined in (17) with c1 := 1. Then, the following estimate
holds

1

S(m+ 1)

S∑
s=1

m∑
t=0

E
[
‖∇f(x

(s)
t )‖2

]
≤ 3Lρ(b̂)b1/4

S(m+ 1)3/4

[
f(x̃0)− f?

]
+

2σ2

√
ρ(b̂)√

b(m+ 1)
. (55)

Let x̃T ∼ U({x(s)
t }s=1→S

t=0→m). If we choose b := c1σ
2

ε2 and m+1
b̂

:= c2σ
2

b̂2ε2
for some constants c1 > 0

and c2 > 0 and c1c2 > 4, then, to guarantee E
[
‖∇f(x̃T )‖2

]
≤ ε2, we require

S :=
3Lc

1/4
1

[
f(x̃0)− f?

]
c
3/4
2 b̂3/2σ

(
1− 2√

c1c2

)
ε
. (56)

22



Consequently, the total number of stochastic gradient evaluations Tge does not exceed

Tge :=
(
b+ 3bm

b̂
c
)
S =

3L(c1 + 3c2)c
1/4
1

[
f(x̃0)− f?

]
σ

c
3/4
2 b̂3/2

(
1− 2√

c1c2

)
ε3

= O
( σ
ε3

)
. (57)

Proof. First, similar to the proof of (54), we have

1

m+ 1

m∑
t=0

E
[
‖∇f(x

(s)
t )‖2

]
≤ 3L(ρb)1/4

(m+ 1)3/4

(
E
[
f(x

(s)
0 )
]
− E

[
f(x

(s)
m+1)

])
+ 2σ2

√
ρ

b(m+ 1)
.

Summing up this inequality from s = 1 to s = S and then using E
[
f(x

(S)
m+1)

]
≥ f? and x̃0 := x

(1)
0 ,

we can show that

1

(m+ 1)S

S∑
s=1

m∑
t=0

E
[
‖∇f(x

(s)
t )‖2

]
≤ 3L(ρb)1/4

S(m+ 1)3/4
(E [f(x̃0]− f?) + 2σ2

√
ρ

b(m+ 1)
.

If we choose b := c1σ
2

b̂2ε2
and m+1

b̂
:= c2σ

2

ε2 for some constants c1 > 0 and c2 > 0 and c1c2 > 4, then,

ρ(m+ 1) = c2σ
2

ε2 , b = c1ρ
2σ2

ε2 , and from (46), to guarantee 1
S(m+1)

S∑
s=1

m∑
t=0

E
[
‖∇f(x

(s)
t )‖2

]
≤ ε2,

we require

3L(ρb)1/4

S(m+ 1)3/4

[
f0 − f?

]
+

2σ2√ρ√
b(m+ 1)

=
3Lc

1/4
1 ρ3/4σ1/2

ε1/2
· ρ

3/4ε3/2

Sc
3/4
2 σ3/2

[
f0 − f?

]
+

2σ2ε2

σ2
√
c1c2

= ε2

⇔ 3Lc
1/4
1 ρ3/2ε

Sc
3/4
2 σ

[
f0 − f?

]
=

(
1− 2
√
c1c2

)
ε2

⇔ S =
3Lρ3/2c

3/4
1

[
f0 − f?

]
c
3/4
2 σ

(
1− 2√

c1c2

)
ε
.

Consequently, the total complexity is

Tge := (b+ 3m
b̂

)S ≤ (c1 + 3c2)σ
2

ε2
3Lc

1/4
1 ρ3/2

[
f0−f?

]
c
3/4
2 σ

(
1− 2√

c1c2

)
ε

=
3L(c1+3c2)c

1/4
1

[
f0−f?

]
σ

c
3/4
2 b̂3/2

(
1− 2√

c1c2

)
ε3

= O
(
σ
ε3

)
.

Since we choose bb̂2 := c1σ
2

ε2 which shows that b ≤ c1σ
2

ε2 , the final complexity is O
(

max
{
σ
ε3 ,

σ2

ε2

})
,

where other constants independent of σ and ε are hidden.

D Appendix: Additional numerical experiments
In this subsection, we provide more numerical examples on two examples we tested in the main
text.

4.1 Experiment setup
Our algorithms: We implement the following variants of Algorithm 1 and Algorithm 2 in
Python:

• Single-loop algorithms: We consider different variants of the single-loop algorithm,
Algorithm 1. We denote them by Hybrid-SGD-SL for constant step-size variants, and
Hybrid-SGD-ASL for adaptive step-size variants.

23



• Double-loop algorithms: These are variants of Algorithm 2. We denote them by
Hybrid-SGD-DL[1-3] the variants corresponding to different snapshot gradient batch-sizes
of b = n2/3, b = 0.1n, and b = n. We also denote Hybrid-SGD-DL as the best variants
among these three choices of the batch-size for snapshot gradient.

Competitors: We also compare our methods with the most state-of-the-art candidates from
the literature. We ignore other variants since their complexity bound is worse than ours and
they use complicated routines for hyper-parameter selection.

• Stochastic gradient descent (SGD): We test two variants of SGD. The first one, called
SGD1, is with constant step-size ηt := 0.1

L . The second variant, called SGD2, is with an
adaptive step-size of the form ηt := η0

1+η′bt/nc , where η0 > 0 and η′ ≥ 0 are carefully tuned
to obtain the best performance. In our tests, we use η0 := 0.1

L and η′ := 1.

• SVRG: This algorithmic variant is from [23], where its theoretical step-size in the single
sample case is ηt := 1

3nL , and in the mini-batch case is ηt := 1
3L .

• SVRG+: This is a variant of SVRG studied in [11]. Its theoretical step-size in the single
sample case is ηt := 1

6nL , and in the mini-batch case is ηt := 1
6L .

• SPIDER: SPIDER [8] is a stochastic gradient method using SARAH estimator (also called
Stochastic Path-Integrated Differential EstimatoR). This method achieves the best-known
complexity as Algorithm 2 but uses very different step-size ηt := min

{
ε

Ln0‖vk‖ ,
1

2Ln0

}
where n0 = n1/2

b̂
with b̂ is a given mini-batch size in the range [1,

√
n].

• SpiderBoost: SpiderBoost [27] is a modification of SPIDER by using a large constant
step-size ηt := 1

2L , but requires to set very specific mini-batch b̂ = b
√
nc to achieve the

best-known complexity as in Algorithm 2.
Problems: We consider three examples: The first one is the logistic regression with non-convex
regularizer as in (20). The second example is a binary classification with non-convex loss as in
(21).

Datasets: All the datasets used in this paper are downloaded from LibSVM [6] at
https://www.csie.ntu.edu.tw/ cjlin/libsvm/. We select 6 datasets: w8a (n = 49, 749, p = 300),
rcv1.binary (n = 20, 242, p = 47, 236), real-sim (n = 72, 309, p = 20, 958), news20.binary
(n = 19, 996, p = 1, 355, 191), url_combined (n = 2, 396, 130, p = 3, 231, 961), and epsilon
(n = 400, 000, p = 2, 000).

4.2 Logistic regression with non-convex regularizer
In this section, we add more numerical examples to solve problem (20). Together with the
convergence of the trainning loss and gradient norms in Fig. 1, the training and test accuracies
are also plotted in Fig. 4 for three datasets: w8a, rcv1.binary, and real-sim.

As we can observe from Fig. 4, for w8a, all the algorithms except for SVRG achieve similar
training accuracy as well as test accuracy. SVRG eventually reaches the same accuracy after
around 17 epochs. For rcv1.binary, HybridSGD variants, SGD2, and SVRG+ have similar
training and test accuracies, but SGD2 is more oscillated than the other methods. SGD1 performs
worse than our methods in this case. Both SPIDER and SVRG still perform poorly. For real-sim,
although our methods, SGD1, and SGD2 achieve lower training accuracy, they are able to reach
better test accuracy than SVRG+.

In addition, the training and testing accuracies of the mini-batch case are presented in Fig. 5,
where the relative residual of the train loss and the gradient norms are shown in Fig. 2. Again,
our methods achieve training and test accuracies consistently with SGD2 in w8a and real-sim,
while having better accuracy in rcv1.binary.

We also run SVRG, SVRG+, SpiderBoost, and our double-loop variant (Algorithm 2) on
three datasets: w8a, rcv1.binary, and real-sim. The results are plotted in Fig. 6.

In this experiment, our double-loop variant and SpiderBoost outperform SVRG and SVRG+.
Although the step-size of SVRG+ is η = 1

6L which is smaller than 1
3L in SVRG, SVRG+ still

24

https://www.csie.ntu.edu.tw/~cjlin/libsvm/


0 5 10 15 20

0.5

0.6

0.7

0.8

0.9
Train Accuracy: w8a

0 5 10 15 20

0.5

0.6

0.7

0.8

0.9

Train Accuracy: rcv1_train.binary

0 5 10 15 20

0.6

0.7

0.8

0.9

Train Accuracy: real-sim

0 5 10 15 20

0.5

0.6

0.7

0.8

0.9
Test Accuracy: w8a

0 5 10 15 20

0.5

0.6

0.7

0.8

0.9

Test Accuracy: rcv1_train.binary

0 5 10 15 20

0.5

0.6

0.7

0.8

0.9

Test Accuracy: real-sim

Figure 4: The training and test accuracies of (21) on three datasets: Single-sample case.

0 10 20 30

0.7

0.8

Train Accuracy: w8a

0 10 20 30

0.5

0.6

0.7

0.8

0.9

Train Accuracy: rcv1_train.binary

0 10 20 30

0.6

0.7

0.8

0.9

Train Accuracy: real-sim

0 10 20 30

0.7

0.8

Test Accuracy: w8a

0 10 20 30

0.5

0.6

0.7

0.8

0.9

Test Accuracy: rcv1_train.binary

0 10 20 30

0.6

0.7

0.8

Test Accuracy: real-sim

Figure 5: The training and test accuracies of (21) on three datasets: Mini-batch case.

25



0 5 10 15 20

10
-10

10
0

Training Loss: w8a

0 5 10 15 20

10
-2

10
0

10
2

Training Loss: rcv1_train.binary

0 5 10 15 20

10
-10

10
0

Training Loss: real-sim

0 5 10 15 20

10
-10

10
0

Norm of Gradient:  w8a

0 5 10 15 20

10
-2

10
0

Norm of Gradient:  rcv1_train.binary

0 5 10 15 20

10
-10

10
-5

10
0

Norm of Gradient:  real-sim

0 5 10 15 20

0.5

0.6

0.7

0.8

Train Accuracy: w8a

0 5 10 15 20

0.5

0.6

0.7

0.8

0.9

Train Accuracy: rcv1_train.binary

0 5 10 15 20

0.6

0.7

0.8

0.9

Train Accuracy: real-sim

0 5 10 15 20

0.5

0.6

0.7

0.8

Test Accuracy: w8a

0 5 10 15 20

0.5

0.6

0.7

0.8

0.9

Test Accuracy: rcv1_train.binary

0 5 10 15 20

0.6

0.7

0.8

Test Accuracy: real-sim

Figure 6: The results of 4 algorithms for solving (20): Mini-batch case.

26



performs better than SVRG. SpiderBoost uses a large step-size η = 1
2L and it indeed performs

slightly better than ours in the w8a dataset, but is comparable in other two. Note that our
step-size η is selected based on our theory in Theorem 3.3.

Finally, we conduct experiment on three larger datasets: epsilon, url_combined, and
news20.binary. Since the the sample sizes are large, we only run mini-batch variants. The
results of the single-loop variants are shown in Fig. 7.

0 5 10 15 20

10
-5

10
0

Training Loss: epsilon

0 5 10 15 20

10
0

10
2

Training Loss: news20.binary

0 5 10 15 20

10
-5

10
0

10
5

Training Loss: url_combined

0 5 10 15 20

10
-2

10
-1

10
0

Norm of Gradient:  epsilon

0 5 10 15 20

10
1

Norm of Gradient:  news20.binary

0 5 10 15 20

10
-2

10
0

Norm of Gradient:  url_combined

0 5 10 15 20

0.50

0.55

0.60

0.65

0.70

Train Accuracy: epsilon

0 5 10 15 20

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Train Accuracy: news20.binary

0 5 10 15 20

0.63

0.64

0.65

0.66

0.67

0.68

0.69

Train Accuracy: url_combined

0 5 10 15 20

0.50

0.55

0.60

0.65

0.70

Test Accuracy: epsilon

0 5 10 15 20

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Test Accuracy: news20.binary

0 5 10 15 20

0.63

0.64

0.64

Test Accuracy: url_combined

Figure 7: The results of 3 single-loop algorithms for solving (20) on large datasets: Mini-batch
case.

We can observe from Fig. 7 that our single loop variants outperform SGD in all three datasets.
Note that the performance of the adaptive step-size variant is similar to its fixed step-size one.

27



The results of the double-loop variants are also shown in Fig. 8.

0 5 10 15 20

10
-15

10
-10

10
-5

10
0

Training Loss: epsilon

0 5 10 15 20

10
-2

10
0

10
2

10
4

Training Loss: news20.binary

0 5 10 15 20

10
-10

10
0

Training Loss: url_combined

0 5 10 15 20

10
-15

10
-10

10
-5

10
0

Norm of Gradient:  epsilon

0 5 10 15 20

10
-1

10
0

10
1

Norm of Gradient:  news20.binary

0 5 10 15 20

10
-15

10
-10

10
-5

10
0

Norm of Gradient:  url_combined

0 5 10 15 20

0.50

0.55

0.60

0.65

0.70

Train Accuracy: epsilon

0 5 10 15 20

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Train Accuracy: news20.binary

0 5 10 15 20

0.56

0.58

0.60

0.62

0.64

0.66

0.68

0.70

Train Accuracy: url_combined

0 5 10 15 20

0.50

0.55

0.60

0.65

0.70

Test Accuracy: epsilon

0 5 10 15 20

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Test Accuracy: news20.binary

0 5 10 15 20

0.56

0.58

0.60

0.62

0.64

Test Accuracy: url_combined

Figure 8: The results of 4 double-loop algorithms for solving (20) on large datsets: Mini-batch
case.

Clearly, our double-loop variants achieve better performance than SVRG and SVRG+ due to
better convergence rate. SpiderBoost is slightly better than ours in the dataset epsilon while
they are comparable in the last two datasets since we have the same best-known convergence
rate as SpiderBoost.

28



4.3 Binary classification involving non-convex loss and Tikhonov’s
regularizer

We also conduct additional experiments to test our algorithms for solving (21). We use two
different non-convex loss functions as in [29] apart from the one used in the main text, which are:

• Nonconvex loss in two-layer neural networks: `1(τ, s) =
(

1− 1
1+exp(−τs)

)2

.

• Logistic difference loss: `2(τ, s) = log(1 + exp(τs))− log(1 + exp(−τs− 1)).
These functions are smooth and satisfy Assumption 1.1.

Let us first test our algorithms and other methods on three datasets: w8a, rcv1.binary, and
real-sim using single-sample setting. The results are plotted in Fig. 9 and Fig. 10. In this
test, HybridSGD-DL achieves the best performance followed by HybridSGD-SL and HybridSGD-
ASL. SPIDER has decent performance in the last two datasets. SGD variants also have good
performance in all datasets while SGD2 is better than its fixed step-size variant. SVRG+ also
has comparable performance with SGD2 whereas SVRG cannot achieve fast convergence due to
its small step-size.

Next, we test mini-batch variants. On the one hand, we compare our single-loop variants
HybridSGD-SL and HybridSGD-ASL with SGD. On the other hand, we compare our double-loop
variants with SVRG, SVRG+, and SpiderBoost. The results for solving (21) with loss `1 are
shown in Fig. 11 and Fig. 12 whereas Fig. 13 and Fig. 14 present the results when using loss `2.

Additionally, we repeat the experiments on three larger datasets: epsilon, news20.binary,
and ulr_combined. The results are shown in Fig. 15, 16, 17, and 18.

29



0 5 10 15 20

10
-5

10
0

Training Loss: w8a

0 5 10 15 20

10
0

Training Loss: rcv1_train.binary

0 5 10 15 20

10
-5

10
0

Training Loss: real-sim

0 5 10 15 20

10
-3

10
-2

10
-1

Norm of Gradient:  w8a

0 5 10 15 20

10
-2

10
-1

10
0

Norm of Gradient:  rcv1_train.binary

0 5 10 15 20

10
-2

10
0

Norm of Gradient:  real-sim

0 5 10 15 20

0.7

0.8

0.9
Train Accuracy: w8a

0 5 10 15 20

0.5

0.6

0.7

0.8

0.9

Train Accuracy: rcv1_train.binary

0 5 10 15 20

0.6

0.7

0.8

0.9

Train Accuracy: real-sim

0 5 10 15 20

0.7

0.8

0.9
Test Accuracy: w8a

0 5 10 15 20

0.5

0.6

0.7

0.8

0.9

Test Accuracy: rcv1_train.binary

0 5 10 15 20

0.5

0.6

0.7

0.8

0.9

Test Accuracy: real-sim

Figure 9: The training loss and gradient norms of (21) with loss `1: Single-sample.

30



0 5 10 15 20

10
-5

10
0

Training Loss: w8a

0 5 10 15 20

10
-5

10
0

Training Loss: rcv1_train.binary

0 5 10 15 20

10
-5

10
0

Training Loss: real-sim

0 5 10 15 20

10
-3

10
-2

10
-1

Norm of Gradient:  w8a

0 5 10 15 20

10
-2

10
0

Norm of Gradient:  rcv1_train.binary

0 5 10 15 20

10
-2

10
0

Norm of Gradient:  real-sim

0 5 10 15 20

0.8

Train Accuracy: w8a

0 5 10 15 20

0.5

0.6

0.7

0.8

0.9

Train Accuracy: rcv1_train.binary

0 5 10 15 20

0.6

0.7

0.8

0.9

Train Accuracy: real-sim

0 5 10 15 20

0.8

0.9
Test Accuracy: w8a

0 5 10 15 20

0.5

0.6

0.7

0.8

0.9

Test Accuracy: rcv1_train.binary

0 5 10 15 20

0.5

0.6

0.7

0.8

0.9

Test Accuracy: real-sim

Figure 10: The training loss and gradient norms of (21) with loss `2: Single-sample.

31



0 5 10 15 20

10
-6

10
-4

10
-2

10
0

Training Loss: w8a

0 10 20 30 40

10
-5

10
0

Training Loss: rcv1_train.binary

0 5 10 15 20

10
-5

10
0

Training Loss: real-sim

0 5 10 15 20

10
-3

10
-2

10
-1

Norm of Gradient:  w8a

0 10 20 30 40

10
-2

10
-1

10
0

Norm of Gradient:  rcv1_train.binary

0 5 10 15 20

10
-3

10
-2

10
-1

10
0

Norm of Gradient:  real-sim

0 5 10 15 20

0.70

0.75

0.80

0.85

0.90

Train Accuracy: w8a

0 10 20 30 40

0.50

0.60

0.70

0.80

0.90

Train Accuracy: rcv1_train.binary

0 5 10 15 20

0.60

0.70

0.80

0.90

1.00
Train Accuracy: real-sim

0 5 10 15 20

0.70

0.75

0.80

0.85

0.90

Test Accuracy: w8a

0 10 20 30 40

0.50

0.60

0.70

0.80

0.90

Test Accuracy: rcv1_train.binary

0 5 10 15 20

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Test Accuracy: real-sim

Figure 11: The training loss and gradient norms of (21) with loss `1: Mini-batch.

32



0 5 10 15 20

10
-10

10
0

Training Loss: w8a

0 5 10 15 20

10
-10

10
-5

10
0

Training Loss: rcv1_train.binary

0 5 10 15 20

10
-10

10
0

Training Loss: real-sim

0 5 10 15 20

10
-10

10
-5

Norm of Gradient:  w8a

0 5 10 15 20

10
-5

10
0

Norm of Gradient:  rcv1_train.binary

0 5 10 15 20

10
-10

10
-5

10
0

Norm of Gradient:  real-sim

0 5 10 15 20

0.5

0.6

0.7

0.8

0.9
Train Accuracy: w8a

0 5 10 15 20

0.5

0.6

0.7

0.8

0.9

Train Accuracy: rcv1_train.binary

0 5 10 15 20

0.6

0.7

0.8

0.9

Train Accuracy: real-sim

0 5 10 15 20

0.5

0.6

0.7

0.8

0.9
Test Accuracy: w8a

0 5 10 15 20

0.5

0.6

0.7

0.8

0.9

Test Accuracy: rcv1_train.binary

0 5 10 15 20

0.6

0.7

0.8

Test Accuracy: real-sim

Figure 12: The training loss and gradient norms of (21) with loss `1: Mini-batch.

33



0 5 10 15 20

10
-5

10
0

Training Loss: w8a

0 10 20 30 40

10
-5

10
0

Training Loss: rcv1_train.binary

0 5 10 15 20

10
-5

10
0

Training Loss: real-sim

0 5 10 15 20

10
-3

10
-2

10
-1

Norm of Gradient:  w8a

0 10 20 30 40

10
-2

10
-1

10
0

Norm of Gradient:  rcv1_train.binary

0 5 10 15 20

10
-2

10
0

Norm of Gradient:  real-sim

0 5 10 15 20

0.70

0.75

0.80

0.85

0.90

Train Accuracy: w8a

0 10 20 30 40

0.50

0.60

0.70

0.80

0.90

Train Accuracy: rcv1_train.binary

0 5 10 15 20

0.60

0.70

0.80

0.90

1.00
Train Accuracy: real-sim

0 5 10 15 20

0.70

0.75

0.80

0.85

0.90

Test Accuracy: w8a

0 10 20 30 40

0.50

0.60

0.70

0.80

0.90

Test Accuracy: rcv1_train.binary

0 5 10 15 20

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Test Accuracy: real-sim

Figure 13: The training loss and gradient norms of (21) with loss `2: Mini-batch.

34



0 5 10 15 20

10
-10

10
0

Training Loss: w8a

0 5 10 15 20

10
-10

10
0

Training Loss: rcv1_train.binary

0 5 10 15 20

10
-10

10
0

Training Loss: real-sim

0 5 10 15 20

10
-15

10
-10

10
-5

Norm of Gradient:  w8a

0 5 10 15 20

10
-5

10
0

Norm of Gradient:  rcv1_train.binary

0 5 10 15 20

10
-10

10
0

Norm of Gradient:  real-sim

0 5 10 15 20

0.5

0.6

0.7

0.8

Train Accuracy: w8a

0 5 10 15 20

0.5

0.6

0.7

0.8

0.9

Train Accuracy: rcv1_train.binary

0 5 10 15 20

0.6

0.7

0.8

0.9

Train Accuracy: real-sim

0 5 10 15 20

0.5

0.6

0.7

0.8

Test Accuracy: w8a

0 5 10 15 20

0.5

0.6

0.7

0.8

0.9

Test Accuracy: rcv1_train.binary

0 5 10 15 20

0.6

0.7

0.8

Test Accuracy: real-sim

Figure 14: The training loss and gradient norms of (21) with loss `2: Mini-batch.

35



0 5 10 15 20

10
-5

10
0

Training Loss: epsilon

0 10 20 30 40

10
-5

10
0

Training Loss: news20.binary

0 5 10 15 20

10
-5

10
0

Training Loss: url_combined

0 5 10 15 20

10
-3

10
-2

10
-1

Norm of Gradient:  epsilon

0 10 20 30 40

10
-2

10
0

Norm of Gradient:  news20.binary

0 5 10 15 20

10
-2

10
0

Norm of Gradient:  url_combined

0 5 10 15 20

0.50

0.55

0.60

0.65

0.70

Train Accuracy: epsilon

0 10 20 30 40

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Train Accuracy: news20.binary

0 5 10 15 20

0.64

0.66

0.68

0.70

0.72

0.74

Train Accuracy: url_combined

0 5 10 15 20

0.50

0.55

0.60

0.65

0.70

Test Accuracy: epsilon

0 10 20 30 40

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Test Accuracy: news20.binary

0 5 10 15 20

0.64

0.65

0.66

0.67

0.68

0.69

0.70

Test Accuracy: url_combined

Figure 15: The training loss and gradient norms of (21) with loss `1: Mini-batch.

36



0 5 10 15 20

10
-10

10
0

Training Loss: epsilon

0 5 10 15 20

10
-5

10
0

Training Loss: news20.binary

0 5 10 15 20

10
-10

10
0

Training Loss: url_combined

0 5 10 15 20

10
-10

10
-5

Norm of Gradient:  epsilon

0 5 10 15 20

10
-4

10
-2

10
0

Norm of Gradient:  news20.binary

0 5 10 15 20

10
-10

10
0

Norm of Gradient:  url_combined

0 5 10 15 20

0.5

0.6

0.7

Train Accuracy: epsilon

0 5 10 15 20

0.5

0.6

0.7

Train Accuracy: news20.binary

0 5 10 15 20

0.4

0.5

0.6

0.7

Train Accuracy: url_combined

0 5 10 15 20

0.5

0.6

0.7

Test Accuracy: epsilon

0 5 10 15 20

0.5

0.6

0.7

Test Accuracy: news20.binary

0 5 10 15 20

0.4

0.5

0.6

0.7

Test Accuracy: url_combined

Figure 16: The training loss and gradient norms of (21) with loss `1: Mini-batch.

In this experiment, although SGD2 has faster decrease during the first few epochs, our
HybridSGD-SL and HybridSGD-ASL eventually achieve lower training loss and gradient norm in
all datasets while reaching similar training and testing accuracies as SGD2.

Regarding the double-loop variants, our HybridSGD-DL once again has better performance
than SVRG and SVRG+ while having comparable performance with SpiderBoost in terms of
training loss, gradient norm, and accuracies.

37



0 5 10 15 20

10
-5

10
0

Training Loss: epsilon

0 10 20 30 40

10
-5

10
0

Training Loss: news20.binary

0 5 10 15 20

10
-5

10
0

Training Loss: url_combined

0 5 10 15 20

10
-3

10
-2

10
-1

Norm of Gradient:  epsilon

0 10 20 30 40

10
-2

10
0

Norm of Gradient:  news20.binary

0 5 10 15 20

10
-2

10
0

Norm of Gradient:  url_combined

0 5 10 15 20

0.50

0.55

0.60

0.65

0.70

Train Accuracy: epsilon

0 10 20 30 40

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Train Accuracy: news20.binary

0 5 10 15 20

0.62

0.64

0.66

0.68

Train Accuracy: url_combined

0 5 10 15 20

0.50

0.55

0.60

0.65

0.70

Test Accuracy: epsilon

0 10 20 30 40

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Test Accuracy: news20.binary

0 5 10 15 20

0.61

0.62

0.63

0.64

Test Accuracy: url_combined

Figure 17: The training loss and gradient norms of (21) with loss `2: Mini-batch.

38



0 5 10 15 20

10
-10

10
0

Training Loss: epsilon

0 5 10 15 20

10
-10

10
-5

10
0

Training Loss: news20.binary

0 5 10 15 20

10
-10

10
0

Training Loss: url_combined

0 5 10 15 20

10
-15

10
-10

10
-5

Norm of Gradient:  epsilon

0 5 10 15 20

10
-5

10
0

Norm of Gradient:  news20.binary

0 5 10 15 20

10
-10

10
0

Norm of Gradient:  url_combined

0 5 10 15 20

0.5

0.6

0.7

Train Accuracy: epsilon

0 5 10 15 20

0.5

0.6

0.7

Train Accuracy: news20.binary

0 5 10 15 20

0.4

0.5

0.6

Train Accuracy: url_combined

0 5 10 15 20

0.5

0.6

0.7

Test Accuracy: epsilon

0 5 10 15 20

0.5

0.6

0.7

Test Accuracy: news20.binary

0 5 10 15 20

0.4

0.5

0.6

Test Accuracy: url_combined

Figure 18: The training loss and gradient norms of (21) with loss `2: Mini-batch.

39



References
1. Z. Allen-Zhu. Katyusha: The first direct acceleration of stochastic gradient methods.

Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing (STOC),
pages 1200–1205, June 2017. Montreal, Canada.

2. Z. Allen-Zhu. Natasha 2: Faster non-convex optimization than SGD. arXiv
preprint:1708.08694, 2017.

3. Z. Allen-Zhu and Y. Li. NEON2: Finding local minima via first-order oracles. In Advances
in Neural Information Processing Systems, pages 3720–3730, 2018.

4. Zeyuan Allen-Zhu and Yang Yuan. Improved SVRG for Non-Strongly-Convex or Sum-of-
Non-Convex Objectives. In ICML, pages 1080–1089, 2016.

5. A. Chambolle, M. J. Ehrhardt, P. Richtárik, and C.-B. Schönlieb. Stochastic primal-dual
hybrid gradient algorithm with arbitrary sampling and imaging applications. SIAM J. Optim.,
28(4):2783–2808, 2018.

6. C.-C. Chang and C.-J. Lin. LIBSVM: A library for Support Vector Machines. ACM
Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011.

7. A. Defazio, F. Bach, and S. Lacoste-Julien. SAGA: A fast incremental gradient method with
support for non-strongly convex composite objectives. In NIPS, pages 1646–1654, 2014.

8. C. Fang, C. J. Li, Z. Lin, and T. Zhang. SPIDER: Near-optimal non-convex optimization via
stochastic path integrated differential estimator. arXiv preprint arXiv:1807.01695, 2018.

9. S. Ghadimi and G. Lan. Stochastic first-and zeroth-order methods for nonconvex stochastic
programming. SIAM J. Optim., 23(4):2341–2368, 2013.

10. R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. In Advances in Neural Information Processing Systems (NIPS), pages 315–323,
2013.

11. Z. Li and J. Li. A simple proximal stochastic gradient method for nonsmooth nonconvex
optimization. arXiv preprint arXiv:1802.04477, 2018.

12. L. Lihua, C. Ju, J. Chen, and M. Jordan. Non-convex finite-sum optimization via SCSG
methods. In Advances in Neural Information Processing Systems, pages 2348–2358, 2017.

13. A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation
approach to stochastic programming. SIAM J. Optim., 19(4):1574–1609, 2009.

14. A. Nemirovskii and D. Yudin. Problem Complexity and Method Efficiency in Optimization.
Wiley Interscience, 1983.

15. L. M. Nguyen, J. Liu, K. Scheinberg, and M. Takáč. SARAH: A novel method for machine
learning problems using stochastic recursive gradient. In ICML, 2017.

16. L. M. Nguyen, K. Scheinberg, and M. Takac. Inexact SARAH Algorithm for Stochastic
Optimization. arXiv preprint arXiv:1811.10105, 2018.

17. L. M. Nguyen, M. van Dijk, D. T. Phan, P. H. Nguyen, T.-W. Weng, and J. R.
Kalagnanam. Optimal finite-sum smooth non-convex optimization with SARAH. arXiv
preprint arXiv:1901.07648, 2019.

18. L. M. Nguyen, J. Liu, K. Scheinberg, and M. Takác. Stochastic recursive gradient algorithm
for nonconvex optimization. CoRR, abs/1705.07261, 2017.

40



19. A. Nitanda. Stochastic proximal gradient descent with acceleration techniques. In Advances
in Neural Information Processing Systems, pages 1574–1582, 2014.

20. N. H. Pham, L. M. Nguyen, D. T. Phan, and Q. Tran-Dinh. ProxSARAH: An efficient
algorithmic framework for stochastic composite nonconvex optimization. arXiv preprint
arXiv:1902.05679, 2019.

21. S. Reddi, S. Sra, B. Póczos, and A. Smola. Stochastic Frank-Wolfe methods for nonconvex
optimization. arXiv preprint arXiv:1607.08254, 2016.

22. S. J. Reddi, S. Sra, B. Póczos, and A. J. Smola. Proximal stochastic methods for nonsmooth
nonconvex finite-sum optimization. In Advances in Neural Information Processing Systems,
pages 1145–1153, 2016.

23. Sashank J. Reddi, Ahmed Hefny, Suvrit Sra, Barnabás Póczos, and Alexander J. Smola.
Stochastic variance reduction for nonconvex optimization. In ICML, pages 314–323, 2016.

24. Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals of
Mathematical Statistics, 22(3):400–407, 1951.

25. M. Schmidt, N. Le Roux, and F. Bach. Minimizing finite sums with the stochastic average
gradient. Math. Program., 162(1-2):83–112, 2017.

26. S. Shalev-Shwartz and T. Zhang. Stochastic dual coordinate ascent methods for regularized
loss minimization. J. Mach. Learn. Res., 14:567–599, 2013.

27. Z. Wang, K. Ji, Y. Zhou, Y. Liang, and V. Tarokh. SpiderBoost: A class of faster variance-
reduced algorithms for nonconvex optimization. arXiv preprint arXiv:1810.10690, 2018.

28. L. Xiao and T. Zhang. A proximal stochastic gradient method with progressive variance
reduction. SIAM J. Optim., 24(4):2057–2075, 2014.

29. L. Zhao, M. Mammadov, and J. Yearwood. From convex to nonconvex: a loss function analysis
for binary classification. In IEEE International Conference on Data Mining Workshops
(ICDMW), pages 1281–1288. IEEE, 2010.

30. D. Zhou, P. Xu, and Q. Gu. Stochastic nested variance reduction for nonconvex optimization.
arXiv preprint arXiv:1806.07811, 2018.

41


	Introduction
	Hybrid stochastic gradient estimators
	Hybrid SARAH-SGD algorithms
	The generic algorithm framework
	Convergence analysis
	Convergence of Algorithm ?? with constant step-size  and constant 
	Convergence of Algorithm ?? with adaptive step-size t and constant 

	Convergence analysis of the double loop variant
	Extensions to mini-batch cases

	Numerical experiments
	Logistic regression with nonconvex regularizer
	Binary classification involving nonconvex loss and Tikhonov's regularizer

	Conclusion
	Appendix: Properties of the hybrid stochastic estimator
	The proof of Lemma ??: Properties of the hybrid SARAH estimator
	The proof of Lemma ??: Bound on the variance of the hybrid estimator

	Appendix: Convergence analysis of Algorithm ?? and Algorithm ??
	The proof of Lemma ??: One-iteration analysis
	The proof of Theorem ??: Single-loop with constant step-size
	The proof of Theorem ??: Single-loop with adaptive step-size
	The proof of Theorem ??: Double-loop with constant step-size

	Appendix: The convergence analysis of the mini-batch variants
	Variance bound of mini-batch hybrid estimators
	The proof of Corollary ??: Single loop with constant step-size and mini-batches
	The mini-batch variant of Algorithm ?? and its complexity

	Appendix: Additional numerical experiments
	Experiment setup
	Logistic regression with non-convex regularizer
	Binary classification involving non-convex loss and Tikhonov's regularizer


