
Lam M. Nguyen, Jie Liu, Katya Scheinberg, Martin Takáč

INFORMS Annual Meeting

October 24, 2017

SARAH Algorithm

min
𝑤∈ℝ𝑑

𝑃 𝑤 =
1

𝑛
෍

𝑖=1

𝑛

𝑓𝑖(𝑤)

Problem Description

Optimize a finite sum with large number of elements 𝑛

min
𝑤∈ℝ𝑑

𝑃 𝑤 =
1

𝑛
෍

𝑖=1

𝑛

𝑓𝑖(𝑤)

Training set: 𝑥𝑖 , 𝑦𝑖 𝑖=1
𝑛 with 𝑥𝑖 ∈ ℝ

𝑑, 𝑦𝑖 ∈ ℝ

ℓ2-regularized least squares regression: 𝑓𝑖 𝑤 = 𝑥𝑖
𝑇𝑤 − 𝑦𝑖

2
+

𝜆

2
𝑤 2

ℓ2-regularized logistic regression: 𝑓𝑖 𝑤 = log(1 + exp(−𝑦𝑖𝑥𝑖
𝑇𝑤)) +

𝜆

2
𝑤 2

𝑓𝑖- strongly convex: linear regression, binary classification

𝑓𝑖- nonconvex: neural networks

Problem Description

Optimize a finite sum with large number of elements 𝑛

min
𝑤∈ℝ𝑑

𝑃 𝑤 =
1

𝑛
෍

𝑖=1

𝑛

𝑓𝑖(𝑤)

Training set: 𝑥𝑖 , 𝑦𝑖 𝑖=1
𝑛 with 𝑥𝑖 ∈ ℝ

𝑑, 𝑦𝑖 ∈ ℝ

ℓ2-regularized least squares regression: 𝑓𝑖 𝑤 = 𝑥𝑖
𝑇𝑤 − 𝑦𝑖

2
+

𝜆

2
𝑤 2

ℓ2-regularized logistic regression: 𝑓𝑖 𝑤 = log(1 + exp(−𝑦𝑖𝑥𝑖
𝑇𝑤)) +

𝜆

2
𝑤 2

𝑓𝑖- strongly convex: linear regression, binary classification

𝑓𝑖- nonconvex: neural networks

Problem Description

Optimize a finite sum with large number of elements 𝑛

HOW WE COULD SOLVE THIS OPTIMIZATION PROBLEM?

min
𝑤∈ℝ𝑑

𝑃 𝑤 =
1

𝑛
෍

𝑖=1

𝑛

𝑓𝑖(𝑤)

Gradient Methods

Optimize a finite sum with large number of elements 𝑛

min
𝑤∈ℝ𝑑

𝑃 𝑤 =
1

𝑛
෍

𝑖=1

𝑛

𝑓𝑖(𝑤)

Gradient Methods

Optimize a finite sum with large number of elements 𝑛

𝑷 is 𝑳-smooth and 𝝁-strongly convex

min
𝑤∈ℝ𝑑

𝑃 𝑤 =
1

𝑛
෍

𝑖=1

𝑛

𝑓𝑖(𝑤)

Gradient Methods

Optimize a finite sum with large number of elements 𝑛

Iterative methods (using gradient)

Given initial point 𝑤0. Update: 𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑡𝑣𝑡 , 𝑡 = 0,1,2, …

𝑷 is 𝑳-smooth and 𝝁-strongly convex

min
𝑤∈ℝ𝑑

𝑃 𝑤 =
1

𝑛
෍

𝑖=1

𝑛

𝑓𝑖(𝑤)

Gradient Methods

Optimize a finite sum with large number of elements 𝑛

Iterative methods (using gradient)

Given initial point 𝑤0. Update: 𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑡𝑣𝑡 , 𝑡 = 0,1,2, …

• 𝑃 𝑤𝑇 − 𝑃 𝑤∗ ≤ 𝜖
• 𝑤𝑇 − 𝑤∗ 2 ≤ 𝜖
• 𝛻𝑃 𝑤𝑇

2 ≤ 𝜖

Goal: achieve 𝜖-accurate solution 𝑤𝑇 such that

𝑷 is 𝑳-smooth and 𝝁-strongly convex

min
𝑤∈ℝ𝑑

𝑃 𝑤 =
1

𝑛
෍

𝑖=1

𝑛

𝑓𝑖(𝑤)

Gradient Methods

Optimize a finite sum with large number of elements 𝑛

Iterative methods (using gradient)

Given initial point 𝑤0. Update: 𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑡𝑣𝑡 , 𝑡 = 0,1,2, …

• 𝑃 𝑤𝑇 − 𝑃 𝑤∗ ≤ 𝜖
• 𝑤𝑇 − 𝑤∗ 2 ≤ 𝜖
• 𝛻𝑃 𝑤𝑇

2 ≤ 𝜖

Gradient Descent: 𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝛻𝑃 𝑤𝑡
Newton Method: 𝑤𝑡+1 = 𝑤𝑡 − 𝐇 P wt

−1𝛻𝑃 𝑤𝑡

Goal: achieve 𝜖-accurate solution 𝑤𝑇 such that

𝑷 is 𝑳-smooth and 𝝁-strongly convex

min
𝑤∈ℝ𝑑

𝑃 𝑤 =
1

𝑛
෍

𝑖=1

𝑛

𝑓𝑖(𝑤)

Gradient Methods

Optimize a finite sum with large number of elements 𝑛

Iterative methods (using gradient)

Given initial point 𝑤0. Update: 𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑡𝑣𝑡 , 𝑡 = 0,1,2, …

The total work complexity: Number of component gradient evaluations

• 𝑃 𝑤𝑇 − 𝑃 𝑤∗ ≤ 𝜖
• 𝑤𝑇 − 𝑤∗ 2 ≤ 𝜖
• 𝛻𝑃 𝑤𝑇

2 ≤ 𝜖

Gradient Descent: 𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝛻𝑃 𝑤𝑡
Newton Method: 𝑤𝑡+1 = 𝑤𝑡 − 𝐇 P wt

−1𝛻𝑃 𝑤𝑡

Goal: achieve 𝜖-accurate solution 𝑤𝑇 such that

𝑷 is 𝑳-smooth and 𝝁-strongly convex

min
𝑤∈ℝ𝑑

𝑃 𝑤 =
1

𝑛
෍

𝑖=1

𝑛

𝑓𝑖(𝑤)

Gradient Methods

Optimize a finite sum with large number of elements 𝑛

Iterative methods (using gradient)

Given initial point 𝑤0. Update: 𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑡𝑣𝑡 , 𝑡 = 0,1,2, …

The total work complexity: Number of component gradient evaluations

• 𝑃 𝑤𝑇 − 𝑃 𝑤∗ ≤ 𝜖
• 𝑤𝑇 − 𝑤∗ 2 ≤ 𝜖
• 𝛻𝑃 𝑤𝑇

2 ≤ 𝜖

Gradient Descent: 𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝛻𝑃 𝑤𝑡
Newton Method: 𝑤𝑡+1 = 𝑤𝑡 − 𝐇 P wt

−1𝛻𝑃 𝑤𝑡

Goal: achieve 𝜖-accurate solution 𝑤𝑇 such that

𝑷 is 𝑳-smooth and 𝝁-strongly convex

Need “n” work

per iteration

min
𝑤∈ℝ𝑑

𝑃 𝑤 =
1

𝑛
෍

𝑖=1

𝑛

𝑓𝑖(𝑤)

Gradient Methods

Optimize a finite sum with large number of elements 𝑛

Iterative methods (using gradient)

Given initial point 𝑤0. Update: 𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑡𝑣𝑡 , 𝑡 = 0,1,2, …

The total work complexity: Number of component gradient evaluations

• 𝑃 𝑤𝑇 − 𝑃 𝑤∗ ≤ 𝜖
• 𝑤𝑇 − 𝑤∗ 2 ≤ 𝜖
• 𝛻𝑃 𝑤𝑇

2 ≤ 𝜖

Gradient Descent: 𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝛻𝑃 𝑤𝑡
Newton Method: 𝑤𝑡+1 = 𝑤𝑡 − 𝐇 P wt

−1𝛻𝑃 𝑤𝑡

Goal: achieve 𝜖-accurate solution 𝑤𝑇 such that

𝑷 is 𝑳-smooth and 𝝁-strongly convex

Need “n” work

per iteration

Need “𝒏𝟐” work

per iteration

min
𝑤∈ℝ𝑑

𝑃 𝑤 =
1

𝑛
෍

𝑖=1

𝑛

𝑓𝑖(𝑤)

Gradient Methods

Optimize a finite sum with large number of elements 𝑛

Iterative methods (using gradient)

Given initial point 𝑤0. Update: 𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑡𝑣𝑡 , 𝑡 = 0,1,2, …

The total work complexity: Number of component gradient evaluations

• 𝑃 𝑤𝑇 − 𝑃 𝑤∗ ≤ 𝜖
• 𝑤𝑇 − 𝑤∗ 2 ≤ 𝜖
• 𝛻𝑃 𝑤𝑇

2 ≤ 𝜖

Gradient Descent: 𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝛻𝑃 𝑤𝑡
Newton Method: 𝑤𝑡+1 = 𝑤𝑡 − 𝐇 P wt

−1𝛻𝑃 𝑤𝑡

Goal: achieve 𝜖-accurate solution 𝑤𝑇 such that

𝑷 is 𝑳-smooth and 𝝁-strongly convex

Machine learning and Big Data applications ⟹ 𝒏 ≫ 𝟏 (“n” is very large)

Need “n” work

per iteration

Need “𝒏𝟐” work

per iteration

min
𝑤∈ℝ𝑑

𝑃 𝑤 =
1

𝑛
෍

𝑖=1

𝑛

𝑓𝑖(𝑤)

Gradient Methods

Optimize a finite sum with large number of elements 𝑛

Iterative methods (using gradient)

Given initial point 𝑤0. Update: 𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑡𝑣𝑡 , 𝑡 = 0,1,2, …

The total work complexity: Number of component gradient evaluations

• 𝑃 𝑤𝑇 − 𝑃 𝑤∗ ≤ 𝜖
• 𝑤𝑇 − 𝑤∗ 2 ≤ 𝜖
• 𝛻𝑃 𝑤𝑇

2 ≤ 𝜖

Gradient Descent: 𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝛻𝑃 𝑤𝑡
Newton Method: 𝑤𝑡+1 = 𝑤𝑡 − 𝐇 P wt

−1𝛻𝑃 𝑤𝑡

Goal: achieve 𝜖-accurate solution 𝑤𝑇 such that

𝑷 is 𝑳-smooth and 𝝁-strongly convex

Machine learning and Big Data applications ⟹ 𝒏 ≫ 𝟏 (“n” is very large)

Need “n” work

per iteration

Need “𝒏𝟐” work

per iteration

TOO MUCH WORK !!!

min
𝑤∈ℝ𝑑

𝑃 𝑤 =
1

𝑛
෍

𝑖=1

𝑛

𝑓𝑖(𝑤)

Gradient Methods

Optimize a finite sum with large number of elements 𝑛

Iterative methods (using gradient)

Given initial point 𝑤0. Update: 𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑡𝑣𝑡 , 𝑡 = 0,1,2, …

The total work complexity: Number of component gradient evaluations

• 𝑃 𝑤𝑇 − 𝑃 𝑤∗ ≤ 𝜖
• 𝑤𝑇 − 𝑤∗ 2 ≤ 𝜖
• 𝛻𝑃 𝑤𝑇

2 ≤ 𝜖

Gradient Descent: 𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝛻𝑃 𝑤𝑡
Newton Method: 𝑤𝑡+1 = 𝑤𝑡 − 𝐇 P wt

−1𝛻𝑃 𝑤𝑡

Goal: achieve 𝜖-accurate solution 𝑤𝑇 such that

𝑷 is 𝑳-smooth and 𝝁-strongly convex

Machine learning and Big Data applications ⟹ 𝒏 ≫ 𝟏 (“n” is very large)

Need “n” work

per iteration

Need “𝒏𝟐” work

per iteration

TOO MUCH WORK !!!
Computing “less”

work per iteration

Stochastic Gradient Descent (SGD)

H. Robbins and S. Monro. A Stochastic Approximation Method, 1951

Léon Bottou, Frank E Curtis, Jorge Nocedal. Optimization methods for large-scale machine learning, 2016

Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent (SGD) [H. Robbins & S. Monro, 1951]

1. Choose initial point 𝑤0

2. For 𝑡 = 0,1,2, …
3. 𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑡𝛻𝑓𝑖𝑡 𝑤𝑡 , 𝑖𝑡 ∈ {1,… , 𝑛}

H. Robbins and S. Monro. A Stochastic Approximation Method, 1951

Léon Bottou, Frank E Curtis, Jorge Nocedal. Optimization methods for large-scale machine learning, 2016

Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent (SGD) [H. Robbins & S. Monro, 1951]

1. Choose initial point 𝑤0

2. For 𝑡 = 0,1,2, …
3. 𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑡𝛻𝑓𝑖𝑡 𝑤𝑡 , 𝑖𝑡 ∈ {1,… , 𝑛}

H. Robbins and S. Monro. A Stochastic Approximation Method, 1951

Léon Bottou, Frank E Curtis, Jorge Nocedal. Optimization methods for large-scale machine learning, 2016

Need only “1”

work per iteration

Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent (SGD) [H. Robbins & S. Monro, 1951]

1. Choose initial point 𝑤0

2. For 𝑡 = 0,1,2, …
3. 𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑡𝛻𝑓𝑖𝑡 𝑤𝑡 , 𝑖𝑡 ∈ {1,… , 𝑛}

To guarantee convergence:

෍

𝑡=0

∞

𝜂𝑡 = ∞ ෍

𝑡=0

∞

𝜂𝑡
2 < ∞and

H. Robbins and S. Monro. A Stochastic Approximation Method, 1951

Léon Bottou, Frank E Curtis, Jorge Nocedal. Optimization methods for large-scale machine learning, 2016

Need only “1”

work per iteration

Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent (SGD) [H. Robbins & S. Monro, 1951]

1. Choose initial point 𝑤0

2. For 𝑡 = 0,1,2, …
3. 𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑡𝛻𝑓𝑖𝑡 𝑤𝑡 , 𝑖𝑡 ∈ {1,… , 𝑛}

To guarantee convergence:

෍

𝑡=0

∞

𝜂𝑡 = ∞ ෍

𝑡=0

∞

𝜂𝑡
2 < ∞and

𝔼 𝑃 𝑤𝑡 − 𝑃 𝑤∗ ≤
𝑐

𝛾 + 𝑡
𝜂𝑡 =

𝑑

𝛾 + 𝑡

H. Robbins and S. Monro. A Stochastic Approximation Method, 1951

Léon Bottou, Frank E Curtis, Jorge Nocedal. Optimization methods for large-scale machine learning, 2016

Need only “1”

work per iteration

If then

Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent (SGD) [H. Robbins & S. Monro, 1951]

1. Choose initial point 𝑤0

2. For 𝑡 = 0,1,2, …
3. 𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑡𝛻𝑓𝑖𝑡 𝑤𝑡 , 𝑖𝑡 ∈ {1,… , 𝑛}

To guarantee convergence:

෍

𝑡=0

∞

𝜂𝑡 = ∞ ෍

𝑡=0

∞

𝜂𝑡
2 < ∞and

𝔼 𝑃 𝑤𝑡 − 𝑃 𝑤∗ ≤
𝑐

𝛾 + 𝑡
𝜂𝑡 =

𝑑

𝛾 + 𝑡

H. Robbins and S. Monro. A Stochastic Approximation Method, 1951

Léon Bottou, Frank E Curtis, Jorge Nocedal. Optimization methods for large-scale machine learning, 2016

Need only “1”

work per iteration

If then

=> Require 𝑂
1

𝜖
total work to achieve 𝜖-accurate solution

Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent (SGD) [H. Robbins & S. Monro, 1951]

1. Choose initial point 𝑤0

2. For 𝑡 = 0,1,2, …
3. 𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑡𝛻𝑓𝑖𝑡 𝑤𝑡 , 𝑖𝑡 ∈ {1,… , 𝑛}

To guarantee convergence:

෍

𝑡=0

∞

𝜂𝑡 = ∞ ෍

𝑡=0

∞

𝜂𝑡
2 < ∞and

𝔼 𝑃 𝑤𝑡 − 𝑃 𝑤∗ ≤
𝑐

𝛾 + 𝑡
𝜂𝑡 =

𝑑

𝛾 + 𝑡

H. Robbins and S. Monro. A Stochastic Approximation Method, 1951

Léon Bottou, Frank E Curtis, Jorge Nocedal. Optimization methods for large-scale machine learning, 2016

Need only “1”

work per iteration

If then

Pros:

• Each iteration is independent on “n”

=> Require 𝑂
1

𝜖
total work to achieve 𝜖-accurate solution

Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent (SGD) [H. Robbins & S. Monro, 1951]

1. Choose initial point 𝑤0

2. For 𝑡 = 0,1,2, …
3. 𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑡𝛻𝑓𝑖𝑡 𝑤𝑡 , 𝑖𝑡 ∈ {1,… , 𝑛}

To guarantee convergence:

෍

𝑡=0

∞

𝜂𝑡 = ∞ ෍

𝑡=0

∞

𝜂𝑡
2 < ∞and

𝔼 𝑃 𝑤𝑡 − 𝑃 𝑤∗ ≤
𝑐

𝛾 + 𝑡
𝜂𝑡 =

𝑑

𝛾 + 𝑡

H. Robbins and S. Monro. A Stochastic Approximation Method, 1951

Léon Bottou, Frank E Curtis, Jorge Nocedal. Optimization methods for large-scale machine learning, 2016

Need only “1”

work per iteration

If then

Pros:

• Each iteration is independent on “n”

Cons:

• Sublinear convergence rate

=> Require 𝑂
1

𝜖
total work to achieve 𝜖-accurate solution

Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent (SGD) [H. Robbins & S. Monro, 1951]

1. Choose initial point 𝑤0

2. For 𝑡 = 0,1,2, …
3. 𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑡𝛻𝑓𝑖𝑡 𝑤𝑡 , 𝑖𝑡 ∈ {1,… , 𝑛}

To guarantee convergence:

෍

𝑡=0

∞

𝜂𝑡 = ∞ ෍

𝑡=0

∞

𝜂𝑡
2 < ∞and

𝔼 𝑃 𝑤𝑡 − 𝑃 𝑤∗ ≤
𝑐

𝛾 + 𝑡
𝜂𝑡 =

𝑑

𝛾 + 𝑡

H. Robbins and S. Monro. A Stochastic Approximation Method, 1951

Léon Bottou, Frank E Curtis, Jorge Nocedal. Optimization methods for large-scale machine learning, 2016

Need only “1”

work per iteration

If then

Pros:

• Each iteration is independent on “n”

Cons:

• Sublinear convergence rate

=> Require 𝑂
1

𝜖
total work to achieve 𝜖-accurate solution

Can we get a linear convergence rate?

Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent (SGD) [H. Robbins & S. Monro, 1951]

1. Choose initial point 𝑤0

2. For 𝑡 = 0,1,2, …
3. 𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑡𝛻𝑓𝑖𝑡 𝑤𝑡 , 𝑖𝑡 ∈ {1,… , 𝑛}

To guarantee convergence:

෍

𝑡=0

∞

𝜂𝑡 = ∞ ෍

𝑡=0

∞

𝜂𝑡
2 < ∞and

𝔼 𝑃 𝑤𝑡 − 𝑃 𝑤∗ ≤
𝑐

𝛾 + 𝑡
𝜂𝑡 =

𝑑

𝛾 + 𝑡

H. Robbins and S. Monro. A Stochastic Approximation Method, 1951

Léon Bottou, Frank E Curtis, Jorge Nocedal. Optimization methods for large-scale machine learning, 2016

Need only “1”

work per iteration

If then

Pros:

• Each iteration is independent on “n”

Cons:

• Sublinear convergence rate

=> Require 𝑂
1

𝜖
total work to achieve 𝜖-accurate solution

Can we get a linear convergence rate?
Modifying

stochastic

gradient

SAG/SAGA

M. Schmidt, N. Le Roux, F. Bach. Minimizing Finite Sums with the Stochastic Average Gradient, 2013

A. Defazio, F. Bach, S. Lacoste-Julien. SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives, 2014

SAG/SAGA

SAG [M. Schmidt et. al., 2013] and SAGA [A. Defazio et. al., 2014]

• Compute the full gradient at the initial point

• Keep a table of “past” gradients

• In each iteration, update one “gradient” in the table

M. Schmidt, N. Le Roux, F. Bach. Minimizing Finite Sums with the Stochastic Average Gradient, 2013

A. Defazio, F. Bach, S. Lacoste-Julien. SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives, 2014

SAG/SAGA

SAG [M. Schmidt et. al., 2013] and SAGA [A. Defazio et. al., 2014]

• Compute the full gradient at the initial point

• Keep a table of “past” gradients

• In each iteration, update one “gradient” in the table

(SAG)

(SAGA)

𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑡 ⋅
1

𝑛
෍

𝑖=1

𝑛

𝑦𝑖,𝑡

𝑤𝑡+1 = 𝑤𝑡 − 𝜂 𝛻𝑓𝑖𝑡 𝑤𝑡 − 𝑦𝑖𝑡,𝑡−1 +
1

𝑛
෍

𝑖=1

𝑛

𝑦𝑖,𝑡−1

𝑦𝑖,𝑡 = ቊ
𝛻𝑓𝑖 𝑤𝑡 , 𝑖𝑓 𝑖𝑡 = 𝑖
𝑦𝑖,𝑡−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

M. Schmidt, N. Le Roux, F. Bach. Minimizing Finite Sums with the Stochastic Average Gradient, 2013

A. Defazio, F. Bach, S. Lacoste-Julien. SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives, 2014

SAG/SAGA

SAG [M. Schmidt et. al., 2013] and SAGA [A. Defazio et. al., 2014]

• Compute the full gradient at the initial point

• Keep a table of “past” gradients

• In each iteration, update one “gradient” in the table

(SAG)

(SAGA)

𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑡 ⋅
1

𝑛
෍

𝑖=1

𝑛

𝑦𝑖,𝑡

𝑤𝑡+1 = 𝑤𝑡 − 𝜂 𝛻𝑓𝑖𝑡 𝑤𝑡 − 𝑦𝑖𝑡,𝑡−1 +
1

𝑛
෍

𝑖=1

𝑛

𝑦𝑖,𝑡−1

𝑦𝑖,𝑡 = ቊ
𝛻𝑓𝑖 𝑤𝑡 , 𝑖𝑓 𝑖𝑡 = 𝑖
𝑦𝑖,𝑡−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Pros:

• Linear convergence rate

M. Schmidt, N. Le Roux, F. Bach. Minimizing Finite Sums with the Stochastic Average Gradient, 2013

A. Defazio, F. Bach, S. Lacoste-Julien. SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives, 2014

SAG/SAGA

SAG [M. Schmidt et. al., 2013] and SAGA [A. Defazio et. al., 2014]

• Compute the full gradient at the initial point

• Keep a table of “past” gradients

• In each iteration, update one “gradient” in the table

(SAG)

(SAGA)

𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑡 ⋅
1

𝑛
෍

𝑖=1

𝑛

𝑦𝑖,𝑡

𝑤𝑡+1 = 𝑤𝑡 − 𝜂 𝛻𝑓𝑖𝑡 𝑤𝑡 − 𝑦𝑖𝑡,𝑡−1 +
1

𝑛
෍

𝑖=1

𝑛

𝑦𝑖,𝑡−1

𝑦𝑖,𝑡 = ቊ
𝛻𝑓𝑖 𝑤𝑡 , 𝑖𝑓 𝑖𝑡 = 𝑖
𝑦𝑖,𝑡−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Pros:

• Linear convergence rate

Cons:

• Extra storage! Need to store “n” gradients

M. Schmidt, N. Le Roux, F. Bach. Minimizing Finite Sums with the Stochastic Average Gradient, 2013

A. Defazio, F. Bach, S. Lacoste-Julien. SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives, 2014

SAG/SAGA

SAG [M. Schmidt et. al., 2013] and SAGA [A. Defazio et. al., 2014]

• Compute the full gradient at the initial point

• Keep a table of “past” gradients

• In each iteration, update one “gradient” in the table

(SAG)

(SAGA)

𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑡 ⋅
1

𝑛
෍

𝑖=1

𝑛

𝑦𝑖,𝑡

𝑤𝑡+1 = 𝑤𝑡 − 𝜂 𝛻𝑓𝑖𝑡 𝑤𝑡 − 𝑦𝑖𝑡,𝑡−1 +
1

𝑛
෍

𝑖=1

𝑛

𝑦𝑖,𝑡−1

𝑦𝑖,𝑡 = ቊ
𝛻𝑓𝑖 𝑤𝑡 , 𝑖𝑓 𝑖𝑡 = 𝑖
𝑦𝑖,𝑡−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Pros:

• Linear convergence rate

Cons:

• Extra storage! Need to store “n” gradients

Can we eliminate the extra storage and get a linear convergence rate?

M. Schmidt, N. Le Roux, F. Bach. Minimizing Finite Sums with the Stochastic Average Gradient, 2013

A. Defazio, F. Bach, S. Lacoste-Julien. SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives, 2014

Stochastic Variance Reduced Gradient (SVRG)

R. Johnson and T. Zhang. Accelerating Stochastic Gradient Descent using Predictive Variance Reduction, 2013

Stochastic Variance Reduced Gradient (SVRG)

SVRG [R. Johnson & T. Zhang, 2013]

• Modify stochastic gradient

1. Choose initial point 𝑤0

2. Set ෥𝑤 = 𝑤0

3. For 𝑡 = 0,1,2, … ,𝑚

4. 𝑤𝑡+1 = 𝑤𝑡 − 𝜂 𝛻𝑓𝑖𝑡 𝑤𝑡 − 𝛻𝑓𝑖𝑡 ෥𝑤 + 𝛻𝑃 ෥𝑤

𝑣𝑡

, 𝑖𝑡 ∈ {1,… , 𝑛}

R. Johnson and T. Zhang. Accelerating Stochastic Gradient Descent using Predictive Variance Reduction, 2013

Stochastic Variance Reduced Gradient (SVRG)

SVRG [R. Johnson & T. Zhang, 2013]

• Modify stochastic gradient

1. Choose initial point 𝑤0

2. Set ෥𝑤 = 𝑤0

3. For 𝑡 = 0,1,2, … ,𝑚

4. 𝑤𝑡+1 = 𝑤𝑡 − 𝜂 𝛻𝑓𝑖𝑡 𝑤𝑡 − 𝛻𝑓𝑖𝑡 ෥𝑤 + 𝛻𝑃 ෥𝑤

𝑣𝑡

, 𝑖𝑡 ∈ {1,… , 𝑛}

R. Johnson and T. Zhang. Accelerating Stochastic Gradient Descent using Predictive Variance Reduction, 2013

• Let ෥𝑤+ ∈ {𝑤0, 𝑤1, … , 𝑤𝑚−1}

• Choose 𝜂 <
1

4𝐿
and m such that

𝛼 ≔
1

𝜇𝜂 1 − 2𝐿𝜂 𝑚
+

2𝐿𝜂

1 − 2𝐿𝜂
< 1

Stochastic Variance Reduced Gradient (SVRG)

SVRG [R. Johnson & T. Zhang, 2013]

• Modify stochastic gradient

1. Choose initial point 𝑤0

2. Set ෥𝑤 = 𝑤0

3. For 𝑡 = 0,1,2, … ,𝑚

4. 𝑤𝑡+1 = 𝑤𝑡 − 𝜂 𝛻𝑓𝑖𝑡 𝑤𝑡 − 𝛻𝑓𝑖𝑡 ෥𝑤 + 𝛻𝑃 ෥𝑤

𝑣𝑡

, 𝑖𝑡 ∈ {1,… , 𝑛}

R. Johnson and T. Zhang. Accelerating Stochastic Gradient Descent using Predictive Variance Reduction, 2013

• Let ෥𝑤+ ∈ {𝑤0, 𝑤1, … , 𝑤𝑚−1}

• Choose 𝜂 <
1

4𝐿
and m such that

𝛼 ≔
1

𝜇𝜂 1 − 2𝐿𝜂 𝑚
+

2𝐿𝜂

1 − 2𝐿𝜂
< 1

Then 𝔼 𝑷 ෥𝒘+ − 𝑷 𝒘∗ ≤ 𝜶 ⋅ 𝔼 𝑷 ෥𝒘 − 𝑷 𝒘∗

Stochastic Variance Reduced Gradient (SVRG)

SVRG [R. Johnson & T. Zhang, 2013]

• Modify stochastic gradient

1. Choose initial point 𝑤0

2. Set ෥𝑤 = 𝑤0

3. For 𝑡 = 0,1,2, … ,𝑚

4. 𝑤𝑡+1 = 𝑤𝑡 − 𝜂 𝛻𝑓𝑖𝑡 𝑤𝑡 − 𝛻𝑓𝑖𝑡 ෥𝑤 + 𝛻𝑃 ෥𝑤

𝑣𝑡

, 𝑖𝑡 ∈ {1,… , 𝑛}

R. Johnson and T. Zhang. Accelerating Stochastic Gradient Descent using Predictive Variance Reduction, 2013

• Let ෥𝑤+ ∈ {𝑤0, 𝑤1, … , 𝑤𝑚−1}

• Choose 𝜂 <
1

4𝐿
and m such that

𝛼 ≔
1

𝜇𝜂 1 − 2𝐿𝜂 𝑚
+

2𝐿𝜂

1 − 2𝐿𝜂
< 1

Then 𝔼 𝑷 ෥𝒘+ − 𝑷 𝒘∗ ≤ 𝜶 ⋅ 𝔼 𝑷 ෥𝒘 − 𝑷 𝒘∗

Note: For fixed 𝜂, it would not converge to the optimal solution!

Stochastic Variance Reduced Gradient (SVRG)

SVRG [R. Johnson & T. Zhang, 2013]

• Modify stochastic gradient

1. Choose initial point 𝑤0

2. Set ෥𝑤 = 𝑤0

3. For 𝑡 = 0,1,2, … ,𝑚

4. 𝑤𝑡+1 = 𝑤𝑡 − 𝜂 𝛻𝑓𝑖𝑡 𝑤𝑡 − 𝛻𝑓𝑖𝑡 ෥𝑤 + 𝛻𝑃 ෥𝑤

𝑣𝑡

, 𝑖𝑡 ∈ {1,… , 𝑛}

R. Johnson and T. Zhang. Accelerating Stochastic Gradient Descent using Predictive Variance Reduction, 2013

• Let ෥𝑤+ ∈ {𝑤0, 𝑤1, … , 𝑤𝑚−1}

• Choose 𝜂 <
1

4𝐿
and m such that

𝛼 ≔
1

𝜇𝜂 1 − 2𝐿𝜂 𝑚
+

2𝐿𝜂

1 − 2𝐿𝜂
< 1

Then 𝔼 𝑷 ෥𝒘+ − 𝑷 𝒘∗ ≤ 𝜶 ⋅ 𝔼 𝑷 ෥𝒘 − 𝑷 𝒘∗

Note: For fixed 𝜂, it would not converge to the optimal solution! Restarting

Stochastic Variance Reduced Gradient (SVRG)

SVRG [R. Johnson & T. Zhang, 2013]

• Modify stochastic gradient

1. Choose initial point 𝑤0

2. Set ෥𝑤 = 𝑤0

3. For 𝑡 = 0,1,2, … ,𝑚

4. 𝑤𝑡+1 = 𝑤𝑡 − 𝜂 𝛻𝑓𝑖𝑡 𝑤𝑡 − 𝛻𝑓𝑖𝑡 ෥𝑤 + 𝛻𝑃 ෥𝑤

𝑣𝑡

, 𝑖𝑡 ∈ {1,… , 𝑛}

R. Johnson and T. Zhang. Accelerating Stochastic Gradient Descent using Predictive Variance Reduction, 2013

• Let ෥𝑤+ ∈ {𝑤0, 𝑤1, … , 𝑤𝑚−1}

• Choose 𝜂 <
1

4𝐿
and m such that

𝛼 ≔
1

𝜇𝜂 1 − 2𝐿𝜂 𝑚
+

2𝐿𝜂

1 − 2𝐿𝜂
< 1

Then 𝔼 𝑷 ෥𝒘+ − 𝑷 𝒘∗ ≤ 𝜶 ⋅ 𝔼 𝑷 ෥𝒘 − 𝑷 𝒘∗

Note: For fixed 𝜂, it would not converge to the optimal solution! Restarting

෥𝒘(𝟎) → ෥𝒘(𝟏) → ⋯ → ෥𝒘(𝒔)

Stochastic Variance Reduced Gradient (SVRG)

SVRG [R. Johnson & T. Zhang, 2013]

• Modify stochastic gradient

1. Choose initial point 𝑤0

2. Set ෥𝑤 = 𝑤0

3. For 𝑡 = 0,1,2, … ,𝑚

4. 𝑤𝑡+1 = 𝑤𝑡 − 𝜂 𝛻𝑓𝑖𝑡 𝑤𝑡 − 𝛻𝑓𝑖𝑡 ෥𝑤 + 𝛻𝑃 ෥𝑤

𝑣𝑡

, 𝑖𝑡 ∈ {1,… , 𝑛}

R. Johnson and T. Zhang. Accelerating Stochastic Gradient Descent using Predictive Variance Reduction, 2013

• Let ෥𝑤+ ∈ {𝑤0, 𝑤1, … , 𝑤𝑚−1}

• Choose 𝜂 <
1

4𝐿
and m such that

𝛼 ≔
1

𝜇𝜂 1 − 2𝐿𝜂 𝑚
+

2𝐿𝜂

1 − 2𝐿𝜂
< 1

Then 𝔼 𝑷 ෥𝒘+ − 𝑷 𝒘∗ ≤ 𝜶 ⋅ 𝔼 𝑷 ෥𝒘 − 𝑷 𝒘∗

Note: For fixed 𝜂, it would not converge to the optimal solution! Restarting

෥𝒘(𝟎) → ෥𝒘(𝟏) → ⋯ → ෥𝒘(𝒔)

Hence, 𝔼 𝑷 ෥𝒘(𝒔) − 𝑷 𝒘∗ ≤ 𝜶𝒔 ⋅ 𝑷 ෥𝒘(𝟎) − 𝑷 𝒘∗

Stochastic Variance Reduced Gradient (SVRG)

SVRG [R. Johnson & T. Zhang, 2013]

• Modify stochastic gradient

1. Choose initial point 𝑤0

2. Set ෥𝑤 = 𝑤0

3. For 𝑡 = 0,1,2, … ,𝑚

4. 𝑤𝑡+1 = 𝑤𝑡 − 𝜂 𝛻𝑓𝑖𝑡 𝑤𝑡 − 𝛻𝑓𝑖𝑡 ෥𝑤 + 𝛻𝑃 ෥𝑤

𝑣𝑡

, 𝑖𝑡 ∈ {1,… , 𝑛}

R. Johnson and T. Zhang. Accelerating Stochastic Gradient Descent using Predictive Variance Reduction, 2013

• Let ෥𝑤+ ∈ {𝑤0, 𝑤1, … , 𝑤𝑚−1}

• Choose 𝜂 <
1

4𝐿
and m such that

𝛼 ≔
1

𝜇𝜂 1 − 2𝐿𝜂 𝑚
+

2𝐿𝜂

1 − 2𝐿𝜂
< 1

Then 𝔼 𝑷 ෥𝒘+ − 𝑷 𝒘∗ ≤ 𝜶 ⋅ 𝔼 𝑷 ෥𝒘 − 𝑷 𝒘∗

Note: For fixed 𝜂, it would not converge to the optimal solution! Restarting

෥𝒘(𝟎) → ෥𝒘(𝟏) → ⋯ → ෥𝒘(𝒔)

Hence, 𝔼 𝑷 ෥𝒘(𝒔) − 𝑷 𝒘∗ ≤ 𝜶𝒔 ⋅ 𝑷 ෥𝒘(𝟎) − 𝑷 𝒘∗ No storage is required!

An issue:

● How to choose “m” in algorithm?

SVRG One Outer Loop Behavior

An issue:

● How to choose “m” in algorithm?

SVRG One Outer Loop Behavior

An issue:

● How to choose “m” in algorithm?

“m” too small!

SVRG One Outer Loop Behavior

An issue:

● How to choose “m” in algorithm?

“m” too small!

good “m”

SVRG One Outer Loop Behavior

An issue:

● How to choose “m” in algorithm?

“m” too small!

good “m”

“m” too large!

SVRG One Outer Loop Behavior

An issue:

● How to choose “m” in algorithm?

“m” too small!

good “m”

“m” too large!

SVRG One Outer Loop Behavior

The trajectory for one outer loop is very “unstable”

SARAH
• L. Nguyen, J. Liu, K. Scheinberg, and M. Takac. SARAH: A Novel Method for Machine

Learning Problems Using Stochastic Recursive Gradient, 2017

• L. Nguyen, J. Liu, K. Scheinberg, and M. Takac. Stochastic Recursive Gradient Algorithm for

Nonconvex Optimization, 2017

SARAH Algorithm

SARAH Algorithm

• It also does restarting as SVRG

• It takes recursive gradient estimator

SARAH Algorithm

• It also does restarting as SVRG

• It takes recursive gradient estimator

SARAH Algorithm

Outer

loop

• It also does restarting as SVRG

• It takes recursive gradient estimator

SARAH Algorithm

Inner loop

Outer

loop

• It also does restarting as SVRG

• It takes recursive gradient estimator

SARAH Algorithm

Inner loop

Outer

loop

Full gradient computing

• It also does restarting as SVRG

• It takes recursive gradient estimator

SARAH Algorithm

Inner loop

Outer

loop

Full gradient computing

SARAH update (stochastic gradient computing)

• It also does restarting as SVRG

• It takes recursive gradient estimator

SARAH Algorithm

Inner loop

Outer

loop

Full gradient computing

SARAH update (stochastic gradient computing)

• It also does restarting as SVRG

• It takes recursive gradient estimator

No storage is required!

Derivation of SARAH update

• Try to approximate Gradient Descent

Derivation of SARAH update

• Try to approximate Gradient Descent

Recall the update: 𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑣𝑡

We want: 𝒗𝒕 ≈ 𝜵𝑷 𝒘𝒕

Derivation of SARAH update

• Try to approximate Gradient Descent

Recall the update: 𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑣𝑡

We want: 𝒗𝒕 ≈ 𝜵𝑷 𝒘𝒕

According to L-Lipschitz smooth property, we have

||𝛻𝑃 𝑤𝑡 − 𝛻𝑃 𝑤𝑡−1 || ≤ 𝐿||𝑤𝑡 − 𝑤𝑡−1|| = 𝐿𝜂||𝑣𝑡−1||

||𝛻𝑓𝑖 𝑤𝑡 − 𝛻𝑓𝑖 𝑤𝑡−1 || ≤ 𝐿||𝑤𝑡 − 𝑤𝑡−1|| = 𝐿𝜂||𝑣𝑡−1||, ∀𝑖 ∈ {1, … , 𝑛}

Derivation of SARAH update

• Try to approximate Gradient Descent

Recall the update: 𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑣𝑡

We want: 𝒗𝒕 ≈ 𝜵𝑷 𝒘𝒕

According to L-Lipschitz smooth property, we have

||𝛻𝑃 𝑤𝑡 − 𝛻𝑃 𝑤𝑡−1 || ≤ 𝐿||𝑤𝑡 − 𝑤𝑡−1|| = 𝐿𝜂||𝑣𝑡−1||

||𝛻𝑓𝑖 𝑤𝑡 − 𝛻𝑓𝑖 𝑤𝑡−1 || ≤ 𝐿||𝑤𝑡 − 𝑤𝑡−1|| = 𝐿𝜂||𝑣𝑡−1||, ∀𝑖 ∈ {1, … , 𝑛}

When 𝜂 is small enough, we have

𝛻𝑃 𝑤𝑡 ≈ 𝛻𝑓𝑖 𝑤𝑡 − 𝛻𝑓𝑖 𝑤𝑡−1 + 𝛻𝑃 𝑤𝑡−1

Derivation of SARAH update

• Try to approximate Gradient Descent

Recall the update: 𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑣𝑡

We want: 𝒗𝒕 ≈ 𝜵𝑷 𝒘𝒕

According to L-Lipschitz smooth property, we have

||𝛻𝑃 𝑤𝑡 − 𝛻𝑃 𝑤𝑡−1 || ≤ 𝐿||𝑤𝑡 − 𝑤𝑡−1|| = 𝐿𝜂||𝑣𝑡−1||

||𝛻𝑓𝑖 𝑤𝑡 − 𝛻𝑓𝑖 𝑤𝑡−1 || ≤ 𝐿||𝑤𝑡 − 𝑤𝑡−1|| = 𝐿𝜂||𝑣𝑡−1||, ∀𝑖 ∈ {1, … , 𝑛}

When 𝜂 is small enough, we have

𝛻𝑃 𝑤𝑡 ≈ 𝛻𝑓𝑖 𝑤𝑡 − 𝛻𝑓𝑖 𝑤𝑡−1 + 𝛻𝑃 𝑤𝑡−1

⇒ 𝑣𝑡 ≈ 𝛻𝑓𝑖 𝑤𝑡 − 𝛻𝑓𝑖 𝑤𝑡−1 + 𝑣𝑡−1

SARAH has a biased estimator of gradient

• SGD, SAGA, SVRG are conditionally unbiased

𝔼 𝑣𝑡|ℱ𝑡 = 𝛻𝑃 𝑤𝑡

SARAH has a biased estimator of gradient

• SARAH is conditionally biased

• SGD, SAGA, SVRG are conditionally unbiased

𝔼 𝑣𝑡|ℱ𝑡 = 𝛻𝑃 𝑤𝑡

SARAH has a biased estimator of gradient

• SARAH is conditionally biased

Recall: 𝑣𝑡 = 𝛻𝑓𝑖𝑡 𝑤𝑡 − 𝛻𝑓𝑖𝑡 𝑤𝑡−1 + 𝑣𝑡−1

We have

𝔼 𝑣𝑡|ℱ𝑡 = 𝛻𝑃 𝑤𝑡 − 𝛻𝑃 𝑤𝑡−1 + 𝑣𝑡−1 ≠ 𝛻𝑃 𝑤𝑡

Conditioned on {𝑤0, 𝑖0, 𝑖1, … , 𝑖𝑡−1}

• SGD, SAGA, SVRG are conditionally unbiased

𝔼 𝑣𝑡|ℱ𝑡 = 𝛻𝑃 𝑤𝑡

SARAH has a biased estimator of gradient

• SARAH is conditionally biased

Recall: 𝑣𝑡 = 𝛻𝑓𝑖𝑡 𝑤𝑡 − 𝛻𝑓𝑖𝑡 𝑤𝑡−1 + 𝑣𝑡−1

We have

𝔼 𝑣𝑡|ℱ𝑡 = 𝛻𝑃 𝑤𝑡 − 𝛻𝑃 𝑤𝑡−1 + 𝑣𝑡−1 ≠ 𝛻𝑃 𝑤𝑡

Conditioned on {𝑤0, 𝑖0, 𝑖1, … , 𝑖𝑡−1}

• SGD, SAGA, SVRG are conditionally unbiased

𝔼 𝑣𝑡|ℱ𝑡 = 𝛻𝑃 𝑤𝑡

However,

𝔼 𝑣𝑡 = 𝔼 𝛻𝑃 𝑤𝑡

SARAH Convergence

• Choose 𝜂 <
1

𝐿
and m such that

𝜎 ≔
1

𝜇𝜂 𝑚 + 1
+

𝐿𝜂

2 − 𝐿𝜂
< 1

SARAH Convergence

• Choose 𝜂 <
1

𝐿
and m such that

𝜎 ≔
1

𝜇𝜂 𝑚 + 1
+

𝐿𝜂

2 − 𝐿𝜂
< 1

Then, 𝔼 ||𝛁𝑷 ෥𝒘(𝒔) ||𝟐 ≤ 𝝈𝒔 ⋅ ||𝛁𝑷 ෥𝒘(𝟎) ||𝟐

SARAH Convergence

• Choose 𝜂 <
1

𝐿
and m such that

𝜎 ≔
1

𝜇𝜂 𝑚 + 1
+

𝐿𝜂

2 − 𝐿𝜂
< 1

Then, 𝔼 ||𝛁𝑷 ෥𝒘(𝒔) ||𝟐 ≤ 𝝈𝒔 ⋅ ||𝛁𝑷 ෥𝒘(𝟎) ||𝟐

It is a little bit better than SVRG (since SARAH could use the fixed learning rate,

whose size is larger than that of SVRG and 𝝈 < 𝜶 with the same 𝜂 and m).

SARAH Convergence

• Choose 𝜂 <
1

𝐿
and m such that

𝜎 ≔
1

𝜇𝜂 𝑚 + 1
+

𝐿𝜂

2 − 𝐿𝜂
< 1

Then, 𝔼 ||𝛁𝑷 ෥𝒘(𝒔) ||𝟐 ≤ 𝝈𝒔 ⋅ ||𝛁𝑷 ෥𝒘(𝟎) ||𝟐

It is a little bit better than SVRG (since SARAH could use the fixed learning rate,

whose size is larger than that of SVRG and 𝝈 < 𝜶 with the same 𝜂 and m).

But, they are still considered as the same rate of convergence (linear)

SARAH Convergence

• Choose 𝜂 <
1

𝐿
and m such that

𝜎 ≔
1

𝜇𝜂 𝑚 + 1
+

𝐿𝜂

2 − 𝐿𝜂
< 1

Then, 𝔼 ||𝛁𝑷 ෥𝒘(𝒔) ||𝟐 ≤ 𝝈𝒔 ⋅ ||𝛁𝑷 ෥𝒘(𝟎) ||𝟐

It is a little bit better than SVRG (since SARAH could use the fixed learning rate,

whose size is larger than that of SVRG and 𝝈 < 𝜶 with the same 𝜂 and m).

But, they are still considered as the same rate of convergence (linear)

What is the main difference between SARAH and SVRG?

SARAH One Outer Loop

Recall the update: 𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑣𝑡

SARAH One Outer Loop

• 𝑃 is 𝐿-smooth and 𝜇-strongly convex

Recall the update: 𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑣𝑡

𝔼 ||𝑣𝑡||
2 ≤ 𝜌𝑡 ⋅ 𝔼 ||𝛻𝑃 𝑤0 ||2

𝜌 = 1 −
2

𝜂𝐿
− 1 𝜇2𝜂2 < 1, 𝜂 <

2

𝐿

SARAH One Outer Loop

• 𝑃 is 𝐿-smooth and 𝜇-strongly convex

Recall the update: 𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑣𝑡

• Each 𝑓𝑖 , ∀𝑖, is 𝐿-smooth and 𝜇-strongly convex

𝔼 ||𝑣𝑡||
2 ≤ 𝜌𝑡 ⋅ 𝔼 ||𝛻𝑃 𝑤0 ||2

𝜌 = 1 −
2

𝜂𝐿
− 1 𝜇2𝜂2 < 1, 𝜂 <

2

𝐿

𝔼 ||𝑣𝑡||
2 ≤ 𝜌𝑡 ⋅ 𝔼 ||𝛻𝑃 𝑤0 ||2

𝜌 = 1 −
2𝜇𝐿𝜂

𝜇 + 𝐿
< 1, 𝜂 ≤

2

𝐿 + 𝜇

SARAH One Outer Loop

• 𝑃 is 𝐿-smooth and 𝜇-strongly convex

Recall the update: 𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑣𝑡

• Each 𝑓𝑖 , ∀𝑖, is 𝐿-smooth and 𝜇-strongly convex

𝔼 ||𝑣𝑡||
2 ≤ 𝜌𝑡 ⋅ 𝔼 ||𝛻𝑃 𝑤0 ||2

𝜌 = 1 −
2

𝜂𝐿
− 1 𝜇2𝜂2 < 1, 𝜂 <

2

𝐿

𝔼 ||𝑣𝑡||
2 ≤ 𝜌𝑡 ⋅ 𝔼 ||𝛻𝑃 𝑤0 ||2

𝜌 = 1 −
2𝜇𝐿𝜂

𝜇 + 𝐿
< 1, 𝜂 ≤

2

𝐿 + 𝜇

Hence,

𝔼 ||𝒗𝒕||
𝟐 → 𝟎 ⇒ 𝔼 ||𝒘𝒕+𝟏 −𝒘𝒕||

𝟐 → 𝟎

SARAH One Outer Loop

• 𝑃 is 𝐿-smooth and 𝜇-strongly convex

Recall the update: 𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑣𝑡

• Each 𝑓𝑖 , ∀𝑖, is 𝐿-smooth and 𝜇-strongly convex

𝔼 ||𝑣𝑡||
2 ≤ 𝜌𝑡 ⋅ 𝔼 ||𝛻𝑃 𝑤0 ||2

𝜌 = 1 −
2

𝜂𝐿
− 1 𝜇2𝜂2 < 1, 𝜂 <

2

𝐿

𝔼 ||𝑣𝑡||
2 ≤ 𝜌𝑡 ⋅ 𝔼 ||𝛻𝑃 𝑤0 ||2

𝜌 = 1 −
2𝜇𝐿𝜂

𝜇 + 𝐿
< 1, 𝜂 ≤

2

𝐿 + 𝜇

Hence,

𝔼 ||𝒗𝒕||
𝟐 → 𝟎 ⇒ 𝔼 ||𝒘𝒕+𝟏 −𝒘𝒕||

𝟐 → 𝟎

SARAH is converging (somewhere) within a single outer loop with fixed “large” learning rate

SARAH One Outer Loop

• 𝑃 is 𝐿-smooth and 𝜇-strongly convex

Recall the update: 𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑣𝑡

• Each 𝑓𝑖 , ∀𝑖, is 𝐿-smooth and 𝜇-strongly convex

𝔼 ||𝑣𝑡||
2 ≤ 𝜌𝑡 ⋅ 𝔼 ||𝛻𝑃 𝑤0 ||2

𝜌 = 1 −
2

𝜂𝐿
− 1 𝜇2𝜂2 < 1, 𝜂 <

2

𝐿

𝔼 ||𝑣𝑡||
2 ≤ 𝜌𝑡 ⋅ 𝔼 ||𝛻𝑃 𝑤0 ||2

𝜌 = 1 −
2𝜇𝐿𝜂

𝜇 + 𝐿
< 1, 𝜂 ≤

2

𝐿 + 𝜇

Hence,

𝔼 ||𝒗𝒕||
𝟐 → 𝟎 ⇒ 𝔼 ||𝒘𝒕+𝟏 −𝒘𝒕||

𝟐 → 𝟎

SARAH is converging (somewhere) within a single outer loop with fixed “large” learning rate

SARAH converges to 𝜖-accurate solution within a single outer loop with fixed “small”

learning rate for general convex and nonconvex cases (Results and Proofs in the papers)

RCV Dataset

SARAH Demonstration

RCV Dataset SVRG and SARAH

need full gradient

after restart

SARAH Demonstration

RCV Dataset SVRG and SARAH

need full gradient

after restart

Variance of SVRG is

decreased after each

restart

SARAH Demonstration

RCV Dataset SVRG and SARAH

need full gradient

after restart

Variance of SARAH

goes to zero

Variance of SVRG is

decreased after each

restart

SARAH Demonstration

One Outer Loop Behavior

One Outer Loop Behavior

SARAH is more stable than SVRG!

Sensitivity of SVRG and SARAH on “m”

SARAH has a similar behavior!

Sensitivity of SVRG and SARAH on “m”

SARAH One Outer Loop Behavior

SARAH One Outer Loop Behavior

Early

termination

SARAH+
• L. Nguyen, J. Liu, K. Scheinberg, and M. Takac. SARAH: A Novel Method for Machine

Learning Problems Using Stochastic Recursive Gradient, 2017

Fact #1: Size of update is shrinking

It doesn’t make sense to do many tiny steps!

SARAH+ (Practical Variant)

Fact #1: Size of update is shrinking

It doesn’t make sense to do many tiny steps!

Heuristic: Restart algorithm when

SARAH+ (Practical Variant)

Fact #1: Size of update is shrinking

It doesn’t make sense to do many tiny steps!

Heuristic: Restart algorithm when

SARAH+ (Practical Variant)
𝑷
𝒘
𝒕
−
𝑷
(𝒘

∗
)

Fact #1: Size of update is shrinking

It doesn’t make sense to do many tiny steps!

Heuristic: Restart algorithm when

SARAH+ (Practical Variant)
𝑷
𝒘
𝒕
−
𝑷
(𝒘

∗
)

good performance

across many datasets

𝑷
𝒘
𝒕
−
𝑷
(𝒘

∗
)

Numerical Experiments

One has to tune

parameters to get a

good performance!

𝑷
𝒘
𝒕
−
𝑷
(𝒘

∗
)

Numerical Experiments

One has to tune

parameters to get a

good performance!

𝑷
𝒘
𝒕
−
𝑷
(𝒘

∗
)

Numerical Experiments

Not for SARAH+!

Numerical Experiments
𝑷
𝒘
𝒕
−
𝑷
(𝒘

∗
)

Convergence Rates Comparisons

Strongly convex case: 𝜅 = 𝐿/𝜇 is a condition number

Convergence Rates Comparisons

Practical variant available

Strongly convex case: 𝜅 = 𝐿/𝜇 is a condition number

Convergence Rates Comparisons

For smooth

(general) convex

functions

For smooth

nonconvex

functions

Numerical Experiments

Convergence Rates Comparisons

For smooth

(general) convex

functions

For smooth

nonconvex

functions

SARAH converges to 𝜖-accurate solution within a single outer loop with fixed “small”

learning rate for nonconvex case (Results and Proofs in the papers)

Convergence Rates Comparisons

For smooth

(general) convex

functions

For smooth

nonconvex

functions

Can we get rid of dependence on “n”?

SARAH converges to 𝜖-accurate solution within a single outer loop with fixed “small”

learning rate for nonconvex case (Results and Proofs in the papers)

Convergence Rates Comparisons

For smooth

(general) convex

functions

For smooth

nonconvex

functions

Can we get rid of dependence on “n”?
NOT computing

Full gradient

SARAH converges to 𝜖-accurate solution within a single outer loop with fixed “small”

learning rate for nonconvex case (Results and Proofs in the papers)

iSARAH
• L. Nguyen, K. Scheinberg, and M. Takac. Inexact SARAH for Large Scale Machine Learning

Problems. In preparation.

Inexact SARAH (iSARAH)

Inexact SARAH (iSARAH)

NOT computing Full gradient

Inexact SARAH (iSARAH)

• For smooth general convex functions: 𝑏 = 𝑚
• For smooth nonconvex functions: 𝑏 = 𝑚

NOT computing Full gradient

Numerical Experiments

Convergence Rates Comparisons

For smooth

(general) convex

functions

For smooth

nonconvex

functions

Convergence Rates Comparisons

For smooth

(general) convex

functions

For smooth

nonconvex

functions

Total complexity of iSARAH does not depend on “n”

Convergence Rates Comparisons

For smooth

(general) convex

functions

For smooth

nonconvex

functions

Total complexity of iSARAH does not depend on “n”

VERY USEFUL for large scale machine learning problems!!!

THANK YOU !!!
LamNguyen.MLTD@gmail.com

Lam M. Nguyen – Lehigh University

http://coral.ise.lehigh.edu/lmn214/

SARAH

