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HOW WE COULD SOLVE THIS OPTIMIZATION PROBLEM?
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An issue:
e How to choose “M” in algorithm?
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The trajectory for one outer loop is very “unstable”
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end for
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end for
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» It also does restarting as SVRG
» |t takes recursive gradient estimator

Parameters: the learning rate 77 > 0 and the inner loop size m.
Initialize: 1w
Iterate: Full gradient computing

fors=1.2.... do /
Wo = Hq_
vo = 5 >_izy Vfi(wo)
wy = Uo—?ﬁo
Iterate:

fort=1,..., m — 1 do
Sample it umfmmly at random from [n]

vy =V fi,(wy) — Vi, (wi_1) + ve_1 Inner loop
Wiy = Wy — N
end for
Set 1wy = w; with t chosen uniformly at random from {0, 1, ... ,m}

end for




SARAH Algorithm

» It also does restarting as SVRG
» |t takes recursive gradient estimator

Parameters: the learning rate 7) > 0 and the inner loop size m.

Initialize: wy
Iterate: Full gradient computing

fors=1.2.... do /
'H}O p— 'ﬁ?s_l

00 = 5 >iq V filwo)
Wy = Wy — Nvg
Iterate:

fort=1..... m — 1 do

Sample i; uniformly at random from [n]

vy = V fi,(wg) — Vfi, (wWe_1) + ve_q Inner loop
Wiyl = Wy — N
end for
Set 1wy = w; with t chosen uniformly at random from {0, 1, ... ,m}
end for
7

SARAH update (stochastic gradient computing)



SARAH Algorithm

» It also does restarting as SVRG
» |t takes recursive gradient estimator

Parameters: the learning rate 7) > 0 and the inner loop size m.
Initialize: 1w
Iterate: Full gradient computing

fors=1.2.... do /
wo = We_1

vo = 5 dimy Vfilwo)

wy = wy — Ny

Iterate:

fort=1,....m—1do Outer
Sample i; uniformly at random from [n] loop
vy = V fi,(wg) — Vfi, (wWe_1) + ve_q Inner loop
Wi = Wi — N

end for

Set 1wy = w; with t chosen uniformly at random from {0, 1, ... ,m}

end for
7

SARAH update (stochastic gradient computing)  No storage is required!



Derivation of SARAH update

» Try to approximate Gradient Descent



Derivation of SARAH update

» Try to approximate Gradient Descent

Recall the update: w;,; = w; — nv;

We want: v, = VP(w,)



Derivation of SARAH update

» Try to approximate Gradient Descent
Recall the update: w;,; = w; — nv;
We want: v, = VP(w,)
According to L-Lipschitz smooth property, we have
[IVP(w;) — VP(we_1)|| < L||we — we_ql| = Ln||ve_q]]
UV fiwe) =V ilwe DI < Lllwe = weq || = Ln||ve-q], Vi € {1, ..., n}



Derivation of SARAH update

» Try to approximate Gradient Descent
Recall the update: w;,; = w; — nv;
We want: v, = VP(w,)
According to L-Lipschitz smooth property, we have
[IVP(w;) — VP(we_1)|| < L||we — we_ql| = Ln||ve_q]]
UV fiwe) =V ilwe DI < Lllwe = weq || = Ln||ve-q], Vi € {1, ..., n}

When 7 is small enough, we have

VP(w) = Vfi(wy) = Vfi(we_q) + VP(We_y)



Derivation of SARAH update

» Try to approximate Gradient Descent
Recall the update: w;,; = w; — nv;
We want: v, = VP(w,)
According to L-Lipschitz smooth property, we have
[IVP(w;) — VP(we_1)|| < L||we — we_ql| = Ln||ve_q]]
UV fiwe) =V ilwe DI < Lllwe = weq || = Ln||ve-q], Vi € {1, ..., n}

When 7 is small enough, we have

VP(w) = Vfi(wy) = Vfi(we_q) + VP(We_y)

= v = Vi(we) =V i(Weq) + Vg
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SGD, SAGA, SVRG are conditionally unbiased
E[ve|F:] = VP(w,)

SARAH is conditionally biased

Recall: v, = Vi (we) = Vfi, (We1) + vy

We have

E[ve|F] = VP(we) — VP(We—q) + Vg # VP (W)

Conditioned on {wy, i, i1, «., it—1}



SARAH has a biased estimator of gradient

« SGD, SAGA, SVRG are conditionally unbiased
E[v|F] = VP(w,)

 SARAMH is conditionally biased
Recall: Ve = Vﬁt(Wt) — Vﬁt(wt—l) + V-1
We have

E[ve|F] = VP(we) — VP(We—q) + Vg # VP (W)

Conditioned on {wy, i, i1, «., it—1}

However,
[E[vt] = [E[VP(Wt)]
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SARAH Convergence

« Choosen < % and m such that
1 Ln

= +
O T mm+ 1) 2—1Ly

<1
Then, E[||VP(#()|[2] < o* - || VP(#(®)]|2

It is a little bit better than SVRG (since SARAH could use the fixed learning rate,
whose size is larger than that of SVRG and o < a with the same n and m).

But, they are still considered as the same rate of convergence (linear)

What is the main difference between SARAH and SVRG?
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SARAH One Outer Loop

Recall the update: w;,; = w; — nv;

* P is L-smooth and u-strongly convex
E[[|vel|?] < p* - E[[[VP(wo)||*]

2
p:l—(n—L—1>u2n2<1,

« Each f;, Vi, is L-smooth and u-strongly convex

E[]|ve||?] < p* - E[||VP(wo)]|?]

2uLn
=1-———77<1,
p u+L

Hence,

n<ry

- 2
77_L+u

E[|[ve]1?] > 0 = E[|[werq —wil?] > 0



SARAH One Outer Loop

Recall the update: w;,; = w; — nv;

* P is L-smooth and u-strongly convex
E[[|vel|?] < p* - E[[[VP(wo)||*]

=1 ° 1)un? <1 <:2
« Each f;, Vi, is L-smooth and u-strongly convex
E[[|ve]?] < p* - E[[[VP(wo)]|*]
2uln 2
=1-———7-<1, =T
P U+ L 7 L+u

Hence,
E|l|ve]|?] = 0 = E[||Werr — wel[?] - 0

SARAH is converging (somewhere) within a single outer loop with fixed “large” learning rate



SARAH One Outer Loop

Recall the update: wy, 1 = w; — nv;

* P is L-smooth and u-strongly convex
E[[|vell?] < p* - E[||VP(wo)]|?]

=1 ° 1)un? <1 <z
« Each f;, Vi, is L-smooth and u-strongly convex
E[[|ve]?] < p* - E[|[VP(wo)||*]
2uln 2
=1-———7-<1, =T
Ut L T=1+u

Hence,
E[||vel[?] = 0= E[||weeq —will?] - 0
SARAH is converging (somewhere) within a single outer loop with fixed “large” learning rate

SARAH converges to e-accurate solution within a single outer loop with fixed “small”
learning rate for general convex and nonconvex cases (Results and Proofs in the papers)
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SARAH Demonstration

v

Estimate of

107!

107"

RCV Dataset

—4—SARAH
—(—-svVrG

SGD+

==FISTA

I
5

I I
10 15 20

Number of Effective Passes

SVRG and SARAH

_~ need full gradient

after restart

Variance of SVRG is

_—" decreased after each

restart

Variance of SARAH
goes to zero
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One Outer Loop Behavior
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A Simple Example with SVRG

A Simple Example with SARAH

600
400 400
200 200
-200

-200

-400 -400 -

-600 1 —— L -600 . T ,
-600 -400 -200 0 200 400 600 -600 -400 -200 0 200 400 600

SARAH is more stable than SVRG!
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Sensitivity of SVRG and SARAH on “m”

SVRG (cpvtype) |

¥

P(w) — P(w)
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SARAH has a similar behavior!
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SARAH One Outer Loop Behavior

A Simple Example with SARAH

600

400

200

-200

-400{-_

_Eﬂﬂ 1 L 1 L 1
-600 -400 -200 0 200 400 600

>O)- Early
’ * termination




SARAH+

* L. Nguyen, J. Liu, K. Scheinberg, and M. Takac. SARAH: A Novel Method for Machine
Learning Problems Using Stochastic Recursive Gradient, 2017



SARAH+ (Practical Variant)

Fact #1. Size of update Is shrinking
It doesn’t make sense to do many tiny steps!



SARAH+ (Practical Variant)

Fact #1. Size of update Is shrinking
It doesn’t make sense to do many tiny steps!

Heuristic: Restart algorithm when ||v:||* < 7l|vol|?



SARAH+ (Practical Variant)

Fact #1. Size of update Is shrinking
It doesn’t make sense to do many tiny steps!

Heuristic: Restart algorithm when ||v:||* < 7l|vol|?

| rqvj' I |

P(w;) — P(W")

0 5 10 15 20 25 30
Number of Effective Passes



SARAH+ (Practical Variant)

Fact #1. Size of update Is shrinking
It doesn’t make sense to do many tiny steps!

Heuristic: Restart algorithm when ||v:||* < 7l|vol|?

P(w;) — P(W")

| rqvj' I |

0 5 10 15 20 25 30
Number of Effective Passes

v~ 1/10

good performance
across many datasets



Numerical Experiments
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Numerical Experiments

P(w;) — P(w")
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SVRG

SAG
SGD+

FISTA

I

[
10 20

30 4
Number of Effective Passes

0

One has to tune
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Dataset SARAH SVRG SAG SGD+ FISTA

(m™,n™) (m™,n") (n™) (1) (n™)

covtype (2n, 0.9/L) (n, 0.8/L) 0.3/L 0.06/L 50/L

ijcnnl (0.5n, 0.8/L) (n, 0.5/L) 0.7/L 0.1/L 90/L

news20 (0.5n, 0.9/L) (n, 0.5/L) 0.1/L 0.2/L 30/L

revl (0.7n, 0.7/L) (0.5n, 0.9/L) 0.1/L 0.1/L 120/L
X | covtype \

Not for SARAH+!




Numerical Experiments

P(w;) — P(w")

10

10

=15

rqvl

—{—saArRaH+
—(O—SARAH

SVRG

SAG
SGD+

~3¢=FISTA ¥%* *—k

0 10 20

Number of Effective Passes



Convergence Rates Comparisons

Strongly convex case: k = L/u is a condition number

Fixed Low
Method Complexity Learning Storage

Rate Cost
GD O (nklog(1/¢€)) v v
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Convergence Rates Comparisons

Strongly convex case: k = L/u is a condition number

Fixed Low
Method Complexity Learning Storage

Rate Cost
GD O (nklog(1/¢€)) v v
SGD O (1/¢€) X v
SVRG O((n+k)log(l/e)) v v/
SAG/SAGA O((n+ k)log(1/€)) v X
SARAH O((n+&)log(1/¢)) v v

Practical variant available



Convergence Rates Comparisons

Method Complexity
GD O (n/e)
For smooth SGD O (1/€7)
(general) convex SVRG O (n+ (v/n/e))
functions SAGA O(n+(n/e))
SARAH O((n+(1/e))log(1/e))
Method Complexity
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For smooth SGD O (%;)
nonconvex SVRG %, (ﬂ_ n nzfs)
functions e
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Numerical Experiments
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Convergence Rates Comparisons

Method Complexity
GD O (n/e)
For smooth SGD O (1/€7)
(general) convex SVRG O (n+ (Vn/e))
functions SAGA O(n+(n/e))
SARAH O((n+(1/€))log(1/e))
Method Complexity
GD o (%)
J'}_'
For smooth SGD @ (?g‘)
noncc_)nvex SVRG %, (n n nzfa)
functions -
SARAH On+ )

SARAH converges to e-accurate solution within a single outer loop with fixed “small”
learning rate for nonconvex case (Results and Proofs in the papers)

. . >0~ NOT computing
Can we get rid of dependence on “n”? X~ Full gradient



ISARAH

* L. Nguyen, K. Scheinberg, and M. Takac. Inexact SARAH for Large Scale Machine Learning
Problems. In preparation.



Inexact SARAH (ISARAH)

Parameters: the learning rate 77 > 0 and the inner loop size m.
Initialize: w

Iterate:
fors=1,2,... do
wp = Ws_1

Choose a subset I C [n] of size b uniformly at random (without replacement)
IJD — é Zief Vfi (U-JU)

wy = wo — 1o

Iterate:

fort=1..... m — 1 do

Sample 7; uniformly at random from 7]
v =V fi,(we) = Vi, (wi—1) + vi—q
Weyp1 = Wy — Ny
end for
Set w = w; with ¢ chosen uniformly at random from {0, 1,...,m}
Output: w, = w
end for




Inexact SARAH (ISARAH)

Parameters: the learning rate 77 > 0 and the inner loop size m.
Initialize: w

Iterate:
fors=1.2,... do NOT computing Full gradient
wo = Ws—1

Choose a subset I C [n|sf size b uniformly at random (without replacement)
00 = 3 2ieq VJawo)
un = wo — Ny
Iterate:
fort=1,..., m — 1do

Sample 7; uniformly at random from 7]
Uy = Vf?'-t (?_Utj — Vfit (U:’t_l) + Vi1
Weyp1 = Wy — Ny
end for
Set w = w; with ¢ chosen uniformly at random from {0, 1,...,m}
Output: w, = w
end for




Inexact SARAH (ISARAH)

Parameters: the learning rate 77 > 0 and the inner loop size m.
Initialize: w

Iterate:
fors=1.2,... do NOT computing Full gradient
wp = Ws_1

Choose a subset I C [n|sf size b uniformly at random (without replacement)
vy = é ZiEf Vfi(u"‘[l)
w1 = wp — 10
Iterate:
fori=1,..., m — 1do

Sample i; uniformly at random from [7]
Uy = ij_t (?_Utj — VI% ({U—Jt—l) + Vi1

'lL-‘t_|_1 = W — 'I}’Ut

end for
Set w = w; with ¢ chosen uniformly at random from {0, 1,...,m}
Output: w, = w

end for

« For smooth general convex functions: b = m
« For smooth nonconvex functions: b = \ym
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Convergence Rates Comparisons

For smooth

(general) convex

functions

For smooth
nonconvex
functions

Method Complexity
GD O (n/e)
SGD O (1/€7)

SVRG O (n+ (y/n/e))

SAGA O(n+ (n/e))

SARAH O ((n+ (l/ ))log(l/f))

ISARAH O ((1/e)log(1/e))

Method Complexity
GD 0 ()
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SVRG O (n+=2)
SARAH @ (-n. + ;;_r)
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Convergence Rates Comparisons

For smooth

(general) convex

functions

For smooth
nonconvex
functions

Method Complexity
GD O (n/e)
SGD O (1/€7)

SVRG O (n+ (vVn/e)

SAGA O(n+ (n/e))

SARAH O ((n+ (l/ ))lcng(l/nf))

iISARAH O ((1/€)log(1/e))

Method Complexity
GD o (=)
SGD o ()

SVRG O (n+=2

SARAH O(n+ =)
iISARAH O (%)

Total complexity of ISARAH does not depend on “n”



Convergence Rates Comparisons

For smooth

(general) convex

functions

For smooth
nonconvex
functions

Method Complexity
GD O (n/e)
SGD O (1/€7)

SVRG O (n+ (vVn/e)

SAGA O(n+ (n/e))

SARAH O ((n+ (l/ ))lcng(l/nf))

iISARAH O ((1/€)log(1/e))

Method Complexity
GD o (=)
SGD o ()

SVRG O (n+=2

SARAH O(n+ =)
iISARAH O (%)

Total complexity of ISARAH does not depend on “n”

VERY USEFUL for large scale machine learning problems!!!
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