SARAH Algorithm

Lam M. Nguyen, Jie Liu, Katya Scheinberg, Martin Takac

INFORMS Annual Meeting
October 24, 2017

LEHIGH

UNIT VERSTITITY.

Problem Description

Optimize a finite sum with large number of elements n

1 n
min {P(w) - E;fi(w)}

Problem Description

Optimize a finite sum with large number of elements n

;&
min {P(w) = EZ ﬂ-(w)}
Training set: {(x;, y;)}-, with x; € R%,y; € R
f;- strongly convex: linear regression, binary classification
?,-regularized least squares regression: f;(w) = (xlTw — yi)2 + % lw||?
£,-regularized logistic regression: f;(w) = log(1 + exp(—y;x; w)) + % |w|?

f;- nonconvex: neural networks

Problem Description

Optimize a finite sum with large number of elements n

n
1
by = 1 z _
vrvréi%{ (w) =— . fl(W)}
=1
Training set: {(x;, y;)}-, with x; € R%,y; € R
f;- strongly convex: linear regression, binary classification
: . T 2 2 2
?,-regularized least squares regression: f;(w) = (xl- w— yi) +3 lw|
£,-regularized logistic regression: f;(w) = log(1 + exp(—y;x; w)) + % |w|?

f;- nonconvex: neural networks

HOW WE COULD SOLVE THIS OPTIMIZATION PROBLEM?

Gradient Methods

Optimize a finite sum with large number of elements n

1 n
min {P(w) - E;fi(w)}

Gradient Methods

Optimize a finite sum with large number of elements n

1 n
min {P(w) - E;fi(w)}

P is L-smooth and u-strongly convex

Gradient Methods

Optimize a finite sum with large number of elements n

1 n
min {P(w) - E;fi(w)}

P is L-smooth and u-strongly convex

Iterative methods (using gradient)
Given initial point wy. Update: wy; = wy — v , t =0,1,2, ...

Gradient Methods

Optimize a finite sum with large number of elements n

n
1
= 1p _t '
Vrvn}él{ (w) nZﬁ(w)}

=1
P is L-smooth and u-strongly convex
Iterative methods (using gradient)
Given initial point wy. Update: wy; = wy — v , t =0,1,2, ...

Goal: achieve e-accurate solution wy such that
e P(wp)—PWw*) <e
* llwr—w'll? <e
« IVP(wp)ll* <€

Gradient Methods

Optimize a finite sum with large number of elements n

n
1
= 1p _ _z '
Vrvré}Rgl{ (w) =— . fl(W)}
=1
P is L-smooth and u-strongly convex
Iterative methods (using gradient)
Given initial point wy. Update: wy; = wy — v , t =0,1,2, ...
Goal: achieve e-accurate solution wy such that
e P(wp)—PWw*) <e
* llwr—w'll? <e
« IVP(wp)ll* <€

Gradient Descent: w;.; = w; — nVP(w;)
Newton Method: w;,; = w; — [HP(w)] 1VP(w,)

Gradient Methods

Optimize a finite sum with large number of elements n

n
1
0 1p =_z _
vrvréi%{ (w) s fl(W)}
=1
P is L-smooth and u-strongly convex

Iterative methods (using gradient)
Given initial point wy. Update: wy; = wy — v , t =0,1,2, ...
Goal: achieve e-accurate solution wy such that

e P(wp)—PWw*) <e

* llwr—w'll? <e

« IVP(wp)ll* <€

Gradient Descent: w;.; = w; — nVP(w;)
Newton Method: w;,; = w; — [HP(w)] 1VP(w,)

The total work complexity: Number of component gradient evaluations

Gradient Methods

Optimize a finite sum with large number of elements n

n
1
0 1p =_z _
Vrvréh{gl{ (w) s fl(W)}
=1
P is L-smooth and u-strongly convex

Iterative methods (using gradient)
Given initial point wy. Update: wy; = wy — v , t =0,1,2, ...
Goal: achieve e-accurate solution wy such that

e P(wp)—PWw*) <e

* llwr—w'll? <e Need “n” work
o [[TP(wp)|I* <€

/ per iteration
Gradient Descent: w;.; = w; — nVP(w;)

Newton Method: w;,; = w; — [HP(w)] 1VP(w,)

The total work complexity: Number of component gradient evaluations

Gradient Methods

Optimize a finite sum with large number of elements n

n
1
0 1p =_z _
Vrvréh{gl{ (w) s fl(W)}
=1
P is L-smooth and u-strongly convex

Iterative methods (using gradient)
Given initial point wy. Update: wy; = wy — v , t =0,1,2, ...
Goal: achieve e-accurate solution wy such that

e P(wp)—PWw*) <e

* llwr—w'll? <e Need “n” work
o [[TP(wp)|I* <€

/ per iteration
Gradient Descent: w;.; = w; — nVP(w;)

€129
Newton Method: w;,; = w; — [H P(wp)] VP (w,) Need “n”” work
‘ per iteration

The total work complexity: Number of component gradient evaluations

Gradient Methods

Optimize a finite sum with large number of elements n

n
1
0 1p =_z _
Vrvréh{gl{ (w) s fl(W)}
=1
P is L-smooth and u-strongly convex

Iterative methods (using gradient)
Given initial point wy. Update: wy; = wy — v , t =0,1,2, ...
Goal: achieve e-accurate solution wy such that

e P(wp)—PWw*) <e

* llwr—w'll? <e Need “n” work
o [[TP(wp)|I* <€

/ per iteration
Gradient Descent: w;.; = w; — nVP(w;)

€129
Newton Method: w;,; = w; — [H P(wp)] VP (w,) Need “n”” work
) per iteration

The total work complexity: Number of component gradient evaluations
Machine learning and Big Data applications = n > 1 (“n” is very large)

Gradient Methods

Optimize a finite sum with large number of elements n

n
1
0 1p =_z _
Vrvréh{gl{ (w) s fl(W)}
=1
P is L-smooth and u-strongly convex

Iterative methods (using gradient)
Given initial point wy. Update: wy; = wy — v , t =0,1,2, ...
Goal: achieve e-accurate solution wy such that

e P(wp)—PWw*) <e

* llwr—w'll? <e Need “n” work
o [[TP(wp)|I* <€

/ per iteration
Gradient Descent: w;.; = w; — nVP(w;)

€129
Newton Method: w;,; = w; — [H P(wp)] VP (w,) Need “n”” work
‘ per iteration

The total work complexity: Number of component gradient evaluations
Machine learning and Big Data applications = n > 1 (“n” is very large)

TOO MUCH WORK !

Gradient Methods

Optimize a finite sum with large number of elements n

n
1
0 1p =_z _
Vrvréh{gl{ (w) s fl(W)}
=1
P is L-smooth and u-strongly convex

Iterative methods (using gradient)
Given initial point wy. Update: wy; = wy — v , t =0,1,2, ...
Goal: achieve e-accurate solution wy such that

e P(wp)—PWw*) <e

* llwr—w'll? <e Need “n” work
o [[TP(wp)|I* <€

/ per iteration
Gradient Descent: w;.; = w; — nVP(w;)

€129
Newton Method: w;,; = w; — [H P(wp)] VP (w,) Need “n”” work
‘ per iteration

The total work complexity: Number of component gradient evaluations
Machine learning and Big Data applications = n > 1 (“n” is very large)

-

TOO MUCH WORK ! p

+

7 Computing “less”
~ work per iteration

Stochastic Gradient Descent (SGD)

H. Robbins and S. Monro. A Stochastic Approximation Method, 1951
Léon Bottou, Frank E Curtis, Jorge Nocedal. Optimization methods for large-scale machine learning, 2016

Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent (SGD) [H. Robbins & S. Monro, 1951]
1. Choose initial point wy
2. Fort=0,1,2,..
3. Werr = We — Vi, (we), iy € {1, ..., n}

H. Robbins and S. Monro. A Stochastic Approximation Method, 1951
Léon Bottou, Frank E Curtis, Jorge Nocedal. Optimization methods for large-scale machine learning, 2016

Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent (SGD) [H. Robbins & S. Monro, 1951]
1. Choose initial point wy Need only “1”

2. Fort=012.. Ny work per iteration
3. Wip1 = We — ntV]Cit(Wt), it € {1, ...,n} p

H. Robbins and S. Monro. A Stochastic Approximation Method, 1951
Léon Bottou, Frank E Curtis, Jorge Nocedal. Optimization methods for large-scale machine learning, 2016

Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent (SGD) [H. Robbins & S. Monro, 1951]
1. Choose initial point wy Need only “1”

2. Fore=012,.. e work per iteration
3. Wip1 = We — ntV]Cit(Wt)’ it € {1, ...,Tl} p

Znt=°° and Zn? < oo
t=0 t=0

To guarantee convergence:

H. Robbins and S. Monro. A Stochastic Approximation Method, 1951
Léon Bottou, Frank E Curtis, Jorge Nocedal. Optimization methods for large-scale machine learning, 2016

Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent (SGD) [H. Robbins & S. Monro, 1951]
1. Choose initial point wy Need only “1”

2. Fore=012,.. e work per iteration
3. Wip1 = We — ntV]Cit(Wt)’ it € {1, ...,Tl} p

Znt=°° and Zn? < oo
t=0 t=0

d c
- — N < ———
If M¢ Tt then E[P(w;) — P(w")] < o

To guarantee convergence:

H. Robbins and S. Monro. A Stochastic Approximation Method, 1951
Léon Bottou, Frank E Curtis, Jorge Nocedal. Optimization methods for large-scale machine learning, 2016

Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent (SGD) [H. Robbins & S. Monro, 1951]
1. Choose initial point wy

661
2. Fort=0,1,2,.. _ Neei only_ 1 |
3. Wepr = We — 0 Vi (we), iy € {1, ...,n} WOrK per Iteration
To guarantee convergence: - oo
Z Ny = and Z nZ < oo
t=0 t=0
- E[P(w,) — P(w")] < —
= w . W* S -
If e Y+t then ¢ —

=> Require O i) total work to achieve e-accurate solution

H. Robbins and S. Monro. A Stochastic Approximation Method, 1951
Léon Bottou, Frank E Curtis, Jorge Nocedal. Optimization methods for large-scale machine learning, 2016

Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent (SGD) [H. Robbins & S. Monro, 1951]
1. Choose initial point wy i1 s
2. Fort=01.2,.. Need only “1

3. Wear = we — 0V fi. (W), i¢ € {1, ...,n} work per iteration
To guarantee convergence: . _
Z Ny = and Z nZ < oo
t=0 t=0
- E[P P(w")] < —
= w.) — w* <
If nt 14 +t then (t) () Y Tt

=> Require O i) total work to achieve e-accurate solution

Pros:
« Each iteration is independent on “n”

H. Robbins and S. Monro. A Stochastic Approximation Method, 1951
Léon Bottou, Frank E Curtis, Jorge Nocedal. Optimization methods for large-scale machine learning, 2016

Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent (SGD) [H. Robbins & S. Monro, 1951]
1. Choose initial point wy i1 s
2. Fort=01.2,.. Need only “1

3. Wear = we — 0V fi. (W), i¢ € {1, ...,n} work per iteration
To guarantee convergence: . _
Z Ny = and Z nZ < oo
t=0 t=0
- E[P P(w")] < —
= w.) — w* <
If nt 14 +t then (t) () Y Tt

=> Require O i) total work to achieve e-accurate solution

Pros: Cons:
« Each iteration is independent on “n” « Sublinear convergence rate

H. Robbins and S. Monro. A Stochastic Approximation Method, 1951
Léon Bottou, Frank E Curtis, Jorge Nocedal. Optimization methods for large-scale machine learning, 2016

Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent (SGD) [H. Robbins & S. Monro, 1951]
1. Choose initial point wy i1 s
2. Fort=01.2,.. Need only “1

3. Wipq = W, — ntvfit(wj i, €{1,..,n) work per iteration
To guarantee convergence. . o
Z Ny = and Z nZ < oo
t=0 t=0
- E[P P(w")] < —
= w,) — W* <
If nt 14 +t then (t) () Y Tt

=> Require O i) total work to achieve e-accurate solution

Pros: Cons:
« Each iteration is independent on “n” « Sublinear convergence rate

Can we get a linear convergence rate?

H. Robbins and S. Monro. A Stochastic Approximation Method, 1951
Léon Bottou, Frank E Curtis, Jorge Nocedal. Optimization methods for large-scale machine learning, 2016

Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent (SGD) [H. Robbins & S. Monro, 1951]
1. Choose initial point wy i1 s
2. Fort=01.2,.. Need only “1

3. Wear = we — 0V fi. (W), i¢ € {1, ...,n} work per iteration
To guarantee convergence: . o
Z Ny = and Z nZ < oo
t=0 t=0
- E[P P(w")] < —
= w.) — W* <
If nt 14 +t then (t) () Y Tt

=> Require O i) total work to achieve e-accurate solution

Pros: Cons:
« Each iteration is independent on “n” « Sublinear convergence rate
_ 7 ~ = » Modifying
Can we get a linear convergence rate” :Q: stochastic
gradient

H. Robbins and S. Monro. A Stochastic Approximation Method, 1951
Léon Bottou, Frank E Curtis, Jorge Nocedal. Optimization methods for large-scale machine learning, 2016

SAG/SAGA

M. Schmidt, N. Le Roux, F. Bach. Minimizing Finite Sums with the Stochastic Average Gradient, 2013
A. Defazio, F. Bach, S. Lacoste-Julien. SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives, 2014

SAG/SAGA

SAG [M. Schmidt et. al., 2013] and SAGA [A. Defazio et. al., 2014]
« Compute the full gradient at the initial point

« Keep a table of “past” gradients

* In each iteration, update one “gradient” in the table

M. Schmidt, N. Le Roux, F. Bach. Minimizing Finite Sums with the Stochastic Average Gradient, 2013
A. Defazio, F. Bach, S. Lacoste-Julien. SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives, 2014

SAG/SAGA

SAG [M. Schmidt et. al., 2013] and SAGA [A. Defazio et. al., 2014]
« Compute the full gradient at the initial point

« Keep a table of “past” gradients

* In each iteration, update one “gradient” in the table

Viiwy), if iy =i

Yit = { .
(SAG) Wt+1 = T’t Z yl t 4'/ b yl t—1» OtheT'WlSe

n
1
(SAGA) Wip1 = We — 1) (Vfit(wt) —Yit-1 Tt Ez)’i,t—1>
i=1

M. Schmidt, N. Le Roux, F. Bach. Minimizing Finite Sums with the Stochastic Average Gradient, 2013
A. Defazio, F. Bach, S. Lacoste-Julien. SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives, 2014

SAG/SAGA

SAG [M. Schmidt et. al., 2013] and SAGA [A. Defazio et. al., 2014]
« Compute the full gradient at the initial point

« Keep a table of “past” gradients

* In each iteration, update one “gradient” in the table

Vfl(Wt)i lf it =1

Yit = { .
(SAG) Wt+1 = T’t Z yl t 4'/ b yl t—1» OtheT'WlSe

1
(SAGA) Wepr = We — 0| Vi, (We) = yie-1 + Ez Yit—1

Pros:
* Linear convergence rate

M. Schmidt, N. Le Roux, F. Bach. Minimizing Finite Sums with the Stochastic Average Gradient, 2013
A. Defazio, F. Bach, S. Lacoste-Julien. SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives, 2014

SAG/SAGA

SAG [M. Schmidt et. al., 2013] and SAGA [A. Defazio et. al., 2014]
« Compute the full gradient at the initial point

« Keep a table of “past” gradients

* In each iteration, update one “gradient” in the table

Vfl(Wt)i lf it =1

Yit = { .
(SAG) Wt+1 = T’t Z yl t 4'/ b yl t—1» OtheT'WlSe

1
(SAGA) Wepr = We — 0| Vi, (We) = yie-1 + Ez Yit—1

Pros: Cons:
» Linear convergence rate » Extra storage! Need to store “n” gradients

M. Schmidt, N. Le Roux, F. Bach. Minimizing Finite Sums with the Stochastic Average Gradient, 2013
A. Defazio, F. Bach, S. Lacoste-Julien. SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives, 2014

SAG/SAGA

SAG [M. Schmidt et. al., 2013] and SAGA [A. Defazio et. al., 2014]
« Compute the full gradient at the initial point

« Keep a table of “past” gradients

* In each iteration, update one “gradient” in the table

Vfl(Wt)i lf it =1

Yit = { .
(SAG) Wt+1 = T’t Z yl t /——— b yl t—1» OtheT'WlSe

1
(SAGA) Wepr = We — 0| Vi, (We) = yie-1 + Ez Yit—1

Pros: Cons:
» Linear convergence rate » Extra storage! Need to store “n” gradients

Can we eliminate the extra storage and get a linear convergence rate?

M. Schmidt, N. Le Roux, F. Bach. Minimizing Finite Sums with the Stochastic Average Gradient, 2013
A. Defazio, F. Bach, S. Lacoste-Julien. SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives, 2014

Stochastic Variance Reduced Gradient (SVRG)

R. Johnson and T. Zhang. Accelerating Stochastic Gradient Descent using Predictive Variance Reduction, 2013

Stochastic Variance Reduced Gradient (SVRG)

SVRG [R. Johnson & T. Zhang, 2013]
« Modify stochastic gradient

1. Choose initial point w

2. Setw = w,

3. Fort=20,12,..,m

4 ey =we— (Vi (W) =V, (8) + PP(W)), i; € (1,...,n}

Ve

R. Johnson and T. Zhang. Accelerating Stochastic Gradient Descent using Predictive Variance Reduction, 2013

Stochastic Variance Reduced Gradient (SVRG)

SVRG [R. Johnson & T. Zhang, 2013]
« Modify stochastic gradient

1. Choose initial point w

2. Setw = w,

3. Fort=20,12,..,m

4 ey =we— (Vi (W) =V, (8) + PP(W)), i; € (1,...,n}

Ve

o Letw® € {wy,wy,..,Wp_1}

* Choosen < ﬁ and m such that
1 2Ln

= <1
= —2Lmm 1= 207

R. Johnson and T. Zhang. Accelerating Stochastic Gradient Descent using Predictive Variance Reduction, 2013

Stochastic Variance Reduced Gradient (SVRG)

SVRG [R. Johnson & T. Zhang, 2013]
« Modify stochastic gradient

1. Choose initial point w

2. Setw = w,

3. Fort=20,12,..,m

4 ey =we— (Vi (W) =V, (8) + PP(W)), i; € (1,...,n}

Ve

o Letw® € {wy,wy,..,Wp_1}

* Choosen < ﬁ and m such that
1 2Ln

= <1
= —2Lmm 1= 207

Then E[P(W*) — P(W")] < a - E[P(W) — P(W*)]

R. Johnson and T. Zhang. Accelerating Stochastic Gradient Descent using Predictive Variance Reduction, 2013

Stochastic Variance Reduced Gradient (SVRG)

SVRG [R. Johnson & T. Zhang, 2013]
« Modify stochastic gradient

1. Choose initial point w

2. Setw = w,

3. Fort=20,12,..,m

4 ey =we— (Vi (W) =V, (8) + PP(W)), i; € (1,...,n}

Ve

o Letw® € {wy,wy,..,Wp_1}

* Choosen < ﬁ and m such that
1 2Ln

= <1
= —2Lmm 1= 207

Then E[P(W*) — P(W")] < a - E[P(W) — P(W*)]

Note: For fixed n, it would not converge to the optimal solution!

R. Johnson and T. Zhang. Accelerating Stochastic Gradient Descent using Predictive Variance Reduction, 2013

Stochastic Variance Reduced Gradient (SVRG)

SVRG [R. Johnson & T. Zhang, 2013]
« Modify stochastic gradient

1. Choose initial point w

2. Setw = w,

3. Fort=20,12,..,m

4 ey =we— (Vi (W) =V, (8) + PP(W)), i; € (1,...,n}

Ve

o Letw® € {wy,wy,..,Wp_1}

* Choosen < ﬁ and m such that
1 2Ln

= un(l — 2Ln)m * 1—2Ln

<1

Then E[P(W*) — P(W")] < a - E[P(W) — P(W*)]

*

-
Note: For fixed n, it would not converge to the optimal solution! :Q'

-

Restarting

R. Johnson and T. Zhang. Accelerating Stochastic Gradient Descent using Predictive Variance Reduction, 2013

Stochastic Variance Reduced Gradient (SVRG)

SVRG [R. Johnson & T. Zhang, 2013]
« Modify stochastic gradient

1. Choose initial point w

2. Setw = w,

3. Fort=20,12,..,m

4 ey =we— (Vi (W) =V, (8) + PP(W)), i; € (1,...,n}

Ve

o Letw® € {wy,wy,..,Wp_1}

* Choosen < ﬁ and m such that
1 2Ln

= <1
¢ un(l — 2Ln)m * 1—2Ln

Then E[P(W*) — P(W")] < a - E[P(W) — P(W*)]

*

-
Note: For fixed n, it would not converge to the optimal solution! :Q' Restarting

-

w0 5w S5 S w®

R. Johnson and T. Zhang. Accelerating Stochastic Gradient Descent using Predictive Variance Reduction, 2013

Stochastic Variance Reduced Gradient (SVRG)

SVRG [R. Johnson & T. Zhang, 2013]
« Modify stochastic gradient

1. Choose initial point w

2. Setw = w,

3. Fort=20,12,..,m

4 ey =we— (Vi (W) =V, (8) + PP(W)), i; € (1,...,n}

Ve

o Letw® € {wy,wy,..,Wp_1}

* Choosen < ﬁ and m such that
1 2Ln

= <1
¢ un(l — 2Ln)m * 1—2Ln

Then E[P(W*) — P(W")] < a - E[P(W) — P(W*)]

*

-
Note: For fixed n, it would not converge to the optimal solution! :Q' Restarting

-

w0 5w S5 S w®
Hence, E[P(W®)) — P(w")] < a* - [P(#(?) — P(W")]

R. Johnson and T. Zhang. Accelerating Stochastic Gradient Descent using Predictive Variance Reduction, 2013

Stochastic Variance Reduced Gradient (SVRG)

SVRG [R. Johnson & T. Zhang, 2013]
« Modify stochastic gradient

1. Choose initial point w

2. Setw = w,

3. Fort=20,12,..,m

4 e =we— 1 (Vi (we) = Vf, (W) + VP(@®)), i¢ € {1, ...,)

Ve

o Letw® € {wy,wy,..,Wp_1}

* Choosen < ﬁ and m such that
1 2Ln

= <1
¢ un(l — 2Ln)m * 1—2Ln

Then E[P(W*) — P(W")] < a - E[P(W) — P(W*)]

Note: For fixed n, it would not converge to the optimal solution! :Q: Restarting
w0 5w S5 S w®
Hence, E[P(W®) — P(w")| < a® - [P(W®) — P(w")] No storage is required!

R. Johnson and T. Zhang. Accelerating Stochastic Gradient Descent using Predictive Variance Reduction, 2013

SVRG One Outer Loop Behavior

An issue:
e How to choose “M” in algorithm?

SVRG One Outer Loop Behavior

An issue:
e How to choose “M” in algorithm?

600 A Simple Example with SVRG

400

200

-200

-400

_600 1 1 & 1 1 1
-600 -400 -200 0 200 400 600

SVRG One Outer Loop Behavior

An issue:
e How to choose “M” in algorithm?

600 A Simple Example with SVRG

400

200

~

“m” too small!

-200

-400

_600 1 1 & 1 1 1
-600 -400 -200 0 200 400 600

SVRG One Outer Loop Behavior

An issue:
e How to choose “M” in algorithm?

600 A Simple Example with SVRG

400 . o P

200

~

— gOOd 66m9’

“m” too small!

-200

-400

_600 1 1 & 1 1 1
-600 -400 -200 0 200 400 600

SVRG One Outer Loop Behavior

An Issue:

-200

-400

-600

How to choose “M” in algorithm?

600 A Simple Example with SVRG

400 . o &

200

~

“m” too small!

— gOOd 66m9’

| _—“m” too large!

600 -400 -200 0 200 400

600

SVRG One Outer Loop Behavior

An issue:
e How to choose “M” in algorithm?

600 A Simple Example with SVRG

400 . o &

200

~

— gOOd 66m9’

“m” too small!

-200

| _—“m” too large!

-400 k

_600 1 1 GF] 1 1
-600 -400 -200 0 200 400 600

The trajectory for one outer loop is very “unstable”

SARAH

* L. Nguyen, J. Liu, K. Scheinberg, and M. Takac. SARAH: A Novel Method for Machine
Learning Problems Using Stochastic Recursive Gradient, 2017

* L. Nguyen, J. Liu, K. Scheinberg, and M. Takac. Stochastic Recursive Gradient Algorithm for
Nonconvex Optimization, 2017

SARAH Algorithm

SARAH Algorithm

» It also does restarting as SVRG
» |t takes recursive gradient estimator

SARAH Algorithm

» It also does restarting as SVRG
» |t takes recursive gradient estimator

Parameters: the learning rate 77 > 0 and the inner loop size m.
Initialize: 1w

Iterate:
fors=1.2.... do
Wwp = U_q_-

Uy = Za_ Vfl ugj
wy = HQ — Ny
Iterate:
fort=1,.... m — 1 do
Sample it umtmmly at random from [n]
ve =V fi,(we) = Vfi,(wi—1) +ve1
Wer] = We — N
end for
Set 1wy = w; with t chosen uniformly at random from {0, 1, ... ,m}

end for

SARAH Algorithm

» It also does restarting as SVRG
» |t takes recursive gradient estimator

Parameters: the learning rate 1) > 0 and the inner loop size m.
Initialize: 1w

Iterate:
fors=1.2.... do
Wwp = Uq_-

Uy = Za_ Vfl ugj
wy = uO — Ny
Iterate:
fort=1,.... m — 1 do
Sample it ummlmly at random from [n]
ve =V fi,(we) = Vfi,(wi—1) +ve1
Wra1 = W — NVt
end for
Set 1wy = w; with t chosen uniformly at random from {0, 1, ... ,m}

end for

SARAH Algorithm

» It also does restarting as SVRG
» |t takes recursive gradient estimator

Parameters: the learning rate 77 > 0 and the inner loop size m.
Initialize: 1w

Iterate:
fors=1.2.... do
Wwp = U_q_-

Uy = Za_ Vfl ugj
wy = HQ — Ny
Iterate:
fort=1,..., m — 1 do
Sample it umtmmly at random from [n]

ve =V fi, (we) = V fi, (we_1) + ve_q Inner loop
Wiy = Wy — N
end for
Set 1wy = w; with t chosen uniformly at random from {0, 1, ... ,m}

end for

SARAH Algorithm

» It also does restarting as SVRG
» |t takes recursive gradient estimator

Parameters: the learning rate 77 > 0 and the inner loop size m.
Initialize: 1w
Iterate: Full gradient computing

fors=1.2.... do /
Wo = Hq_
vo = 5 >_izy Vfi(wo)
wy = Uo—?ﬁo
Iterate:

fort=1,..., m — 1 do
Sample it umfmmly at random from [n]

vy =V fi,(wy) — Vi, (wi_1) + ve_1 Inner loop
Wiy = Wy — N
end for
Set 1wy = w; with t chosen uniformly at random from {0, 1, ... ,m}

end for

SARAH Algorithm

» It also does restarting as SVRG
» |t takes recursive gradient estimator

Parameters: the learning rate 7) > 0 and the inner loop size m.

Initialize: wy
Iterate: Full gradient computing

fors=1.2.... do /
'H}O p— 'ﬁ?s_l

00 = 5 >iq V filwo)
Wy = Wy — Nvg
Iterate:

fort=1..... m — 1 do

Sample i; uniformly at random from [n]

vy = V fi,(wg) — Vfi, (wWe_1) + ve_q Inner loop
Wiyl = Wy — N
end for
Set 1wy = w; with t chosen uniformly at random from {0, 1, ... ,m}
end for
7

SARAH update (stochastic gradient computing)

SARAH Algorithm

» It also does restarting as SVRG
» |t takes recursive gradient estimator

Parameters: the learning rate 7) > 0 and the inner loop size m.
Initialize: 1w
Iterate: Full gradient computing

fors=1.2.... do /
wo = We_1

vo = 5 dimy Vfilwo)

wy = wy — Ny

Iterate:

fort=1,....m—1do Outer
Sample i; uniformly at random from [n] loop
vy = V fi,(wg) — Vfi, (wWe_1) + ve_q Inner loop
Wi = Wi — N

end for

Set 1wy = w; with t chosen uniformly at random from {0, 1, ... ,m}

end for
7

SARAH update (stochastic gradient computing) No storage is required!

Derivation of SARAH update

» Try to approximate Gradient Descent

Derivation of SARAH update

» Try to approximate Gradient Descent

Recall the update: w;,; = w; — nv;

We want: v, = VP(w,)

Derivation of SARAH update

» Try to approximate Gradient Descent
Recall the update: w;,; = w; — nv;
We want: v, = VP(w,)
According to L-Lipschitz smooth property, we have
[IVP(w;) — VP(we_1)|| < L||we — we_ql| = Ln||ve_q]]
UV fiwe) =V ilwe DI < Lllwe = weq || = Ln||ve-q], Vi € {1, ..., n}

Derivation of SARAH update

» Try to approximate Gradient Descent
Recall the update: w;,; = w; — nv;
We want: v, = VP(w,)
According to L-Lipschitz smooth property, we have
[IVP(w;) — VP(we_1)|| < L||we — we_ql| = Ln||ve_q]]
UV fiwe) =V ilwe DI < Lllwe = weq || = Ln||ve-q], Vi € {1, ..., n}

When 7 is small enough, we have

VP(w) = Vfi(wy) = Vfi(we_q) + VP(We_y)

Derivation of SARAH update

» Try to approximate Gradient Descent
Recall the update: w;,; = w; — nv;
We want: v, = VP(w,)
According to L-Lipschitz smooth property, we have
[IVP(w;) — VP(we_1)|| < L||we — we_ql| = Ln||ve_q]]
UV fiwe) =V ilwe DI < Lllwe = weq || = Ln||ve-q], Vi € {1, ..., n}

When 7 is small enough, we have

VP(w) = Vfi(wy) = Vfi(we_q) + VP(We_y)

= v = Vi(we) =V i(Weq) + Vg

SARAH has a biased estimator of gradient

« SGD, SAGA, SVRG are conditionally unbiased

E[ve|Fe] = VP (W)

SARAH has a biased estimator of gradient

« SGD, SAGA, SVRG are conditionally unbiased

E[ve|Fe] = VP (W)

 SARAMH is conditionally biased

SARAH has a biased estimator of gradient

SGD, SAGA, SVRG are conditionally unbiased
E[ve|F:] = VP(w,)

SARAH is conditionally biased

Recall: v, = Vi (we) = Vfi, (We1) + vy

We have

E[ve|F] = VP(we) — VP(We—q) + Vg # VP (W)

Conditioned on {wy, i, i1, «., it—1}

SARAH has a biased estimator of gradient

« SGD, SAGA, SVRG are conditionally unbiased
E[v|F] = VP(w,)

 SARAMH is conditionally biased
Recall: Ve = Vﬁt(Wt) — Vﬁt(wt—l) + V-1
We have

E[ve|F] = VP(we) — VP(We—q) + Vg # VP (W)

Conditioned on {wy, i, i1, «., it—1}

However,
[E[vt] = [E[VP(Wt)]

SARAH Convergence

« Choosen < % and m such that
1 Ln

— + <1
O T mm+ 1) 2—1Ly

SARAH Convergence

« Choosen < % and m such that
1 Ln

= + <1
STt 2—1In

Then, E[||VP(#()|[2] < o* - || VP(#(®)]|2

SARAH Convergence

« Choosen < % and m such that
1 Ln

— + <1
O T mm+ 1) 2—1Ly

Then, E[||VP(#()|[2] < o* - || VP(#(®)]|2

It is a little bit better than SVRG (since SARAH could use the fixed learning rate,
whose size is larger than that of SVRG and o < a with the same n and m).

SARAH Convergence

« Choosen < % and m such that
1 Ln

— + <1
O T mm+ 1) 2—1Ly

Then, E[||VP(#()|[2] < o* - || VP(#(®)]|2

It is a little bit better than SVRG (since SARAH could use the fixed learning rate,
whose size is larger than that of SVRG and o < a with the same n and m).

But, they are still considered as the same rate of convergence (linear)

SARAH Convergence

« Choosen < % and m such that
1 Ln

= +
O T mm+ 1) 2—1Ly

<1
Then, E[||VP(#()|[2] < o* - || VP(#(®)]|2

It is a little bit better than SVRG (since SARAH could use the fixed learning rate,
whose size is larger than that of SVRG and o < a with the same n and m).

But, they are still considered as the same rate of convergence (linear)

What is the main difference between SARAH and SVRG?

SARAH One Outer Loop

Recall the update: w;,; = w; — nv;

SARAH One Outer Loop

Recall the update: w;,; = w; — nv;

* P is L-smooth and u-strongly convex
E[[|vel|?] < p* - E[[[VP(wo)||*]

2 2.2
p=1- 77_L_1 une <1, n<rs

SARAH One Outer Loop

Recall the update: w;,; = w; — nv;

* P is L-smooth and u-strongly convex
E[[|vel|?] < p* - E[[[VP(wo)||*]

=1 ° 1)un? <1 <z
« Each f;, Vi, is L-smooth and u-strongly convex
E[[|ve]?] < p* - E[[[VP(wo)]|*]
2uln 2
=1-———7-<1, =T
Ut L T=1+u

SARAH One Outer Loop

Recall the update: w;,; = w; — nv;

* P is L-smooth and u-strongly convex
E[[|vel|?] < p* - E[[[VP(wo)||*]

2
p:l—(n—L—1>u2n2<1,

« Each f;, Vi, is L-smooth and u-strongly convex

E[]|ve||?] < p* - E[||VP(wo)]|?]

2uLn
=1-———77<1,
p u+L

Hence,

n<ry

- 2
77_L+u

E[|[ve]1?] > 0 = E[|[werq —wil?] > 0

SARAH One Outer Loop

Recall the update: w;,; = w; — nv;

* P is L-smooth and u-strongly convex
E[[|vel|?] < p* - E[[[VP(wo)||*]

=1 ° 1)un? <1 <:2
« Each f;, Vi, is L-smooth and u-strongly convex
E[[|ve]?] < p* - E[[[VP(wo)]|*]
2uln 2
=1-———7-<1, =T
P U+ L 7 L+u

Hence,
E|l|ve]|?] = 0 = E[||Werr — wel[?] - 0

SARAH is converging (somewhere) within a single outer loop with fixed “large” learning rate

SARAH One Outer Loop

Recall the update: wy, 1 = w; — nv;

* P is L-smooth and u-strongly convex
E[[|vell?] < p* - E[||VP(wo)]|?]

=1 ° 1)un? <1 <z
« Each f;, Vi, is L-smooth and u-strongly convex
E[[|ve]?] < p* - E[|[VP(wo)||*]
2uln 2
=1-———7-<1, =T
Ut L T=1+u

Hence,
E[||vel[?] = 0= E[||weeq —will?] - 0
SARAH is converging (somewhere) within a single outer loop with fixed “large” learning rate

SARAH converges to e-accurate solution within a single outer loop with fixed “small”
learning rate for general convex and nonconvex cases (Results and Proofs in the papers)

SARAH Demonstration

RCV Dataset

v

Estimate of

—4—SARAH
—(—-svVrG —

SGD+

==FISTA

I I I
5 10 15 20

Number of Effective Passes

SARAH Demonstration

v

Estimate of

107!

107"

RCV Dataset

DM
e
®Te
I —— Y
—4=—saran
—{)—SVRG
SGD+
==FISTA

= Iﬁ'“:““)

0

I
5

I I
10 15

Number of Effective Passes

20

SVRG and SARAH

_~ need full gradient

after restart

SARAH Demonstration

v

Estimate of

107!

107"

RCV Dataset

i -

—4—SARAH
—(—-svVrG

SGD+

==FISTA

= Iﬁ'“:““)

0

I
5

I I
10 15

Number of Effective Passes

SVRG and SARAH

_~ need full gradient

after restart

Variance of SVRG is

_—" decreased after each

restart

SARAH Demonstration

v

Estimate of

107!

107"

RCV Dataset

—4—SARAH
—(—-svVrG

SGD+

==FISTA

I
5

I I
10 15 20

Number of Effective Passes

SVRG and SARAH

_~ need full gradient

after restart

Variance of SVRG is

_—" decreased after each

restart

Variance of SARAH
goes to zero

One Outer Loop Behavior

600

400

200

-200

-400 |

A Simple Example with SVRG

600
-600

-400

200

200 400

600

-600 L L .
-600 -400 -200 0 200 400 600

600

400

200

-200

400 |-

A Simple Example with SARAH

One Outer Loop Behavior

T 600

A Simple Example with SVRG

A Simple Example with SARAH

600
400 400
200 200
-200

-200

-400 -400 -

-600 1 —— L -600 . T ,
-600 -400 -200 0 200 400 600 -600 -400 -200 0 200 400 600

SARAH is more stable than SVRG!

Sensitivity of SVRG and SARAH on “m”

¥

P(w) — P(w)

SVRG (cpvtype) |

I I I I
10 20 30 40

Number of Effective Passes

Sensitivity of SVRG and SARAH on “m”

SVRG (cpvtype) |

¥

P(w) — P(w)

10 | | [|
0 10 20 30 40
Number of Effective Passes

SARAH has a similar behavior!

SARAH One Outer Loop Behavior

600 A Simple Example with SARAH

400

200

-200

-400 |

SARAH One Outer Loop Behavior

A Simple Example with SARAH

600

400

200

-200

-400{-_

_Eﬂﬂ 1 L 1 L 1
-600 -400 -200 0 200 400 600

>O)- Early
’ * termination

SARAH+

* L. Nguyen, J. Liu, K. Scheinberg, and M. Takac. SARAH: A Novel Method for Machine
Learning Problems Using Stochastic Recursive Gradient, 2017

SARAH+ (Practical Variant)

Fact #1. Size of update Is shrinking
It doesn’t make sense to do many tiny steps!

SARAH+ (Practical Variant)

Fact #1. Size of update Is shrinking
It doesn’t make sense to do many tiny steps!

Heuristic: Restart algorithm when ||v:||* < 7l|vol|?

SARAH+ (Practical Variant)

Fact #1. Size of update Is shrinking
It doesn’t make sense to do many tiny steps!

Heuristic: Restart algorithm when ||v:||* < 7l|vol|?

| rqvj' I |

P(w;) — P(W")

0 5 10 15 20 25 30
Number of Effective Passes

SARAH+ (Practical Variant)

Fact #1. Size of update Is shrinking
It doesn’t make sense to do many tiny steps!

Heuristic: Restart algorithm when ||v:||* < 7l|vol|?

P(w;) — P(W")

| rqvj' I |

0 5 10 15 20 25 30
Number of Effective Passes

v~ 1/10

good performance
across many datasets

Numerical Experiments

P(w;) — P(w")

- |=O=sarRaH

Dataset SARAH SVRG SAG SGD+ FISTA
(m*,n") (m™,n") (n™) (n™) (n™)
covtype (2n, 0.9/L) (n, 0.8/L) 0.3/L 0.06/L 50/L
ijcnnl (0.5n, 0.8/L) (n, 0.5/L) 0.7/L 0.1/L 90/L
news20 (0.5n, 0.9/L) (n, 0.5/L) 0.1/L 0.2/L 30/L
revl (0.7n, 0.7/L) (0.5n, 0.9/L) 0.1/L 0.1/L 120/L
ﬁ | covtype
\v' EN

SVRG

SAG
SGD+

FISTA

0 10

20

30

Number of Effective Passes

Numerical Experiments

P(w;) — P(w")

—}—saraH+

~(—SARAH

SVRG

SAG
SGD+

FISTA

10

20

30

Number of Effective Passes

I

40

One has to tune
: parameters to get a
good performance!

Dataset SARAH SVRG SAG SGD+ FISTA

(m™,n™) (m™,n") (n™) (1) (n™)

covtype (2n, 0.9/L) (n, 0.8/L) 0.3/L 0.06/L 50/L

ijcnnl (0.5n, 0.8/L) (n, 0.5/L) 0.7/L 0.1/L 90/L

news20 (0.5n, 0.9/L) (n, 0.5/L) 0.1/L 0.2/L 30/L

revl (0.7n, 0.7/L) (0.5n, 0.9/L) 0.1/L 0.1/L 120/L
X | covtype \

Numerical Experiments

P(w;) — P(w")

—}—saraH+
~(—SARAH

SVRG

SAG
SGD+

FISTA

I

[
10 20

30 4
Number of Effective Passes

0

One has to tune
: parameters to get a
good performance!

Dataset SARAH SVRG SAG SGD+ FISTA

(m™,n™) (m™,n") (n™) (1) (n™)

covtype (2n, 0.9/L) (n, 0.8/L) 0.3/L 0.06/L 50/L

ijcnnl (0.5n, 0.8/L) (n, 0.5/L) 0.7/L 0.1/L 90/L

news20 (0.5n, 0.9/L) (n, 0.5/L) 0.1/L 0.2/L 30/L

revl (0.7n, 0.7/L) (0.5n, 0.9/L) 0.1/L 0.1/L 120/L
X | covtype \

Not for SARAH+!

Numerical Experiments

P(w;) — P(w")

10

10

=15

rqvl

—{—saArRaH+
—(O—SARAH

SVRG

SAG
SGD+

~3¢=FISTA ¥%* *—k

0 10 20

Number of Effective Passes

Convergence Rates Comparisons

Strongly convex case: k = L/u is a condition number

Fixed Low
Method Complexity Learning Storage

Rate Cost
GD O (nklog(1/¢€)) v v
SGD O (1/¢€) X v
SVRG O((n+k)log(l/e)) v v/
SAG/SAGA O((n+ k)log(1/€)) v X
SARAH O((n+&)log(1/¢)) v v

Convergence Rates Comparisons

Strongly convex case: k = L/u is a condition number

Fixed Low
Method Complexity Learning Storage

Rate Cost
GD O (nklog(1/¢€)) v v
SGD O (1/¢€) X v
SVRG O((n+k)log(l/e)) v v/
SAG/SAGA O((n+ k)log(1/€)) v X
SARAH O((n+&)log(1/¢)) v v

Practical variant available

Convergence Rates Comparisons

Method Complexity
GD O (n/e)
For smooth SGD O (1/€7)
(general) convex SVRG O (n+ (v/n/e))
functions SAGA O(n+(n/e))
SARAH O((n+(1/e))log(1/e))
Method Complexity
GD 0 (%)
For smooth SGD O (%;)
nonconvex SVRG %, (ﬂ_ n nzfs)
functions e
SARAH @) (-n. + =)

Numerical Experiments

Training Loss
= B R
T
L " [54) L4
o in [5] [

] |]]

=

[

[+4]
|

FIFARlGI

100

200 300 400
Number of Effective Passes

500

Test Error

FIFARIGI |

0.48

0.477

0.46—

100

200 300 400
Number of Effective Passes

500

Convergence Rates Comparisons

Method Complexity
GD O (n/e)
For smooth SGD O (1/€7)
(general) convex SVRG O (n+ (Vn/e))
functions SAGA O(n+(n/e))
SARAH O((n+(1/€))log(1/e))
Method Complexity
GD 0 ()
Ji‘
For smooth SGD @ (?g‘)
I’IOI’IC(_)FIVEX SVRG O (n 1 ?12;‘3)
functions -
SARAH On+)

SARAH converges to e-accurate solution within a single outer loop with fixed “small”
learning rate for nonconvex case (Results and Proofs in the papers)

Convergence Rates Comparisons

Method Complexity
GD O (n/e)
For smooth SGD O (1/€7)
(general) convex SVRG O (n+ (Vn/e))
functions SAGA O(n+(n/e))
SARAH O((n+(1/€))log(1/e))
Method Complexity
GD o (%)
J'}_'
For smooth SGD @ (?g‘)
noncc_)nvex SVRG %, (n n nzfa)
functions -
SARAH On+)

SARAH converges to e-accurate solution within a single outer loop with fixed “small”
learning rate for nonconvex case (Results and Proofs in the papers)

Can we get rid of dependence on “n”?

Convergence Rates Comparisons

Method Complexity
GD O (n/e)
For smooth SGD O (1/€7)
(general) convex SVRG O (n+ (Vn/e))
functions SAGA O(n+(n/e))
SARAH O((n+(1/€))log(1/e))
Method Complexity
GD o (%)
J'}_'
For smooth SGD @ (?g‘)
noncc_)nvex SVRG %, (n n nzfa)
functions -
SARAH On+)

SARAH converges to e-accurate solution within a single outer loop with fixed “small”
learning rate for nonconvex case (Results and Proofs in the papers)

. . >0~ NOT computing
Can we get rid of dependence on “n”? X~ Full gradient

ISARAH

* L. Nguyen, K. Scheinberg, and M. Takac. Inexact SARAH for Large Scale Machine Learning
Problems. In preparation.

Inexact SARAH (ISARAH)

Parameters: the learning rate 77 > 0 and the inner loop size m.
Initialize: w

Iterate:
fors=1,2,... do
wp = Ws_1

Choose a subset I C [n] of size b uniformly at random (without replacement)
IJD — é Zief Vfi (U-JU)

wy = wo — 1o

Iterate:

fort=1..... m — 1 do

Sample 7; uniformly at random from 7]
v =V fi,(we) = Vi, (wi—1) + vi—q
Weyp1 = Wy — Ny
end for
Set w = w; with ¢ chosen uniformly at random from {0, 1,...,m}
Output: w, = w
end for

Inexact SARAH (ISARAH)

Parameters: the learning rate 77 > 0 and the inner loop size m.
Initialize: w

Iterate:
fors=1.2,... do NOT computing Full gradient
wo = Ws—1

Choose a subset I C [n|sf size b uniformly at random (without replacement)
00 = 3 2ieq VJawo)
un = wo — Ny
Iterate:
fort=1,..., m — 1do

Sample 7; uniformly at random from 7]
Uy = Vf?'-t (?_Utj — Vfit (U:’t_l) + Vi1
Weyp1 = Wy — Ny
end for
Set w = w; with ¢ chosen uniformly at random from {0, 1,...,m}
Output: w, = w
end for

Inexact SARAH (ISARAH)

Parameters: the learning rate 77 > 0 and the inner loop size m.
Initialize: w

Iterate:
fors=1.2,... do NOT computing Full gradient
wp = Ws_1

Choose a subset I C [n|sf size b uniformly at random (without replacement)
vy = é ZiEf Vfi(u"‘[l)
w1 = wp — 10
Iterate:
fori=1,..., m — 1do

Sample i; uniformly at random from [7]
Uy = ij_t (?_Utj — VI% ({U—Jt—l) + Vi1

'lL-‘t_|_1 = W — 'I}’Ut

end for
Set w = w; with ¢ chosen uniformly at random from {0, 1,...,m}
Output: w, = w

end for

« For smooth general convex functions: b = m
« For smooth nonconvex functions: b = \ym

Numerical Experiments

MNIST
0.55

— SARAH
— ISARAH

0.50 | .

0.45} .

Training Loss

0.40 .

035} .

0.30 ' : :
0 5 10 15 20 25

Number of Effective Passes

Convergence Rates Comparisons

For smooth

(general) convex

functions

For smooth
nonconvex
functions

Method Complexity
GD O (n/e)
SGD O (1/€7)

SVRG O (n+ (y/n/e))

SAGA O(n+ (n/e))

SARAH O ((n+ (l/))log(l/f))

ISARAH O ((1/e)log(1/e))

Method Complexity
GD 0 ()
SGD o ()
SVRG O (n+=2)
SARAH @ (-n. + ;;_r)
iISARAH O (%)

£

Convergence Rates Comparisons

For smooth

(general) convex

functions

For smooth
nonconvex
functions

Method Complexity
GD O (n/e)
SGD O (1/€7)

SVRG O (n+ (vVn/e)

SAGA O(n+ (n/e))

SARAH O ((n+ (l/))lcng(l/nf))

iISARAH O ((1/€)log(1/e))

Method Complexity
GD o (=)
SGD o ()

SVRG O (n+=2

SARAH O(n+ =)
iISARAH O (%)

Total complexity of ISARAH does not depend on “n”

Convergence Rates Comparisons

For smooth

(general) convex

functions

For smooth
nonconvex
functions

Method Complexity
GD O (n/e)
SGD O (1/€7)

SVRG O (n+ (vVn/e)

SAGA O(n+ (n/e))

SARAH O ((n+ (l/))lcng(l/nf))

iISARAH O ((1/€)log(1/e))

Method Complexity
GD o (=)
SGD o ()

SVRG O (n+=2

SARAH O(n+ =)
iISARAH O (%)

Total complexity of ISARAH does not depend on “n”

VERY USEFUL for large scale machine learning problems!!!

THANK YOU I1!

LamNguyen.MLTD@gmail.com

Lam M. Nguyen — Lehigh University
http://coral.ise.lehigh.edu/Imn214/

