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𝑓𝑖- strongly convex: linear regression, binary classification 

𝑓𝑖- nonconvex: neural networks
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SAG/SAGA
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An issue:

● How to choose “m” in algorithm?  

“m” too small!

good “m” 

“m” too large!

SVRG One Outer Loop Behavior

The trajectory for one outer loop is very “unstable”



SARAH
• L. Nguyen, J. Liu, K. Scheinberg, and M. Takac. SARAH: A Novel Method for Machine 

Learning Problems Using Stochastic Recursive Gradient, 2017

• L. Nguyen, J. Liu, K. Scheinberg, and M. Takac. Stochastic Recursive Gradient Algorithm for 

Nonconvex Optimization, 2017
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Outer  

loop

Full gradient computing

SARAH update (stochastic gradient computing)

• It also does restarting as SVRG

• It takes recursive gradient estimator

No storage is required!
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It is a little bit better than SVRG (since SARAH could use the fixed learning rate, 

whose size is larger than that of SVRG and 𝝈 < 𝜶 with the same 𝜂 and m). 

But, they are still considered as the same rate of convergence (linear)

What is the main difference between SARAH and SVRG?



SARAH One Outer Loop

Recall the update: 𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑣𝑡



SARAH One Outer Loop

• 𝑃 is 𝐿-smooth and 𝜇-strongly convex

Recall the update: 𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑣𝑡

𝔼 ||𝑣𝑡||
2 ≤ 𝜌𝑡 ⋅ 𝔼 ||𝛻𝑃 𝑤0 ||2

𝜌 = 1 −
2

𝜂𝐿
− 1 𝜇2𝜂2 < 1, 𝜂 <

2

𝐿



SARAH One Outer Loop

• 𝑃 is 𝐿-smooth and 𝜇-strongly convex

Recall the update: 𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑣𝑡

• Each 𝑓𝑖 , ∀𝑖, is 𝐿-smooth and 𝜇-strongly convex

𝔼 ||𝑣𝑡||
2 ≤ 𝜌𝑡 ⋅ 𝔼 ||𝛻𝑃 𝑤0 ||2

𝜌 = 1 −
2

𝜂𝐿
− 1 𝜇2𝜂2 < 1, 𝜂 <

2

𝐿

𝔼 ||𝑣𝑡||
2 ≤ 𝜌𝑡 ⋅ 𝔼 ||𝛻𝑃 𝑤0 ||2

𝜌 = 1 −
2𝜇𝐿𝜂

𝜇 + 𝐿
< 1, 𝜂 ≤

2

𝐿 + 𝜇



SARAH One Outer Loop

• 𝑃 is 𝐿-smooth and 𝜇-strongly convex

Recall the update: 𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑣𝑡

• Each 𝑓𝑖 , ∀𝑖, is 𝐿-smooth and 𝜇-strongly convex

𝔼 ||𝑣𝑡||
2 ≤ 𝜌𝑡 ⋅ 𝔼 ||𝛻𝑃 𝑤0 ||2

𝜌 = 1 −
2

𝜂𝐿
− 1 𝜇2𝜂2 < 1, 𝜂 <

2

𝐿

𝔼 ||𝑣𝑡||
2 ≤ 𝜌𝑡 ⋅ 𝔼 ||𝛻𝑃 𝑤0 ||2

𝜌 = 1 −
2𝜇𝐿𝜂

𝜇 + 𝐿
< 1, 𝜂 ≤

2

𝐿 + 𝜇

Hence,

𝔼 ||𝒗𝒕||
𝟐 → 𝟎 ⇒ 𝔼 ||𝒘𝒕+𝟏 −𝒘𝒕||

𝟐 → 𝟎



SARAH One Outer Loop

• 𝑃 is 𝐿-smooth and 𝜇-strongly convex

Recall the update: 𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑣𝑡

• Each 𝑓𝑖 , ∀𝑖, is 𝐿-smooth and 𝜇-strongly convex

𝔼 ||𝑣𝑡||
2 ≤ 𝜌𝑡 ⋅ 𝔼 ||𝛻𝑃 𝑤0 ||2

𝜌 = 1 −
2

𝜂𝐿
− 1 𝜇2𝜂2 < 1, 𝜂 <

2

𝐿

𝔼 ||𝑣𝑡||
2 ≤ 𝜌𝑡 ⋅ 𝔼 ||𝛻𝑃 𝑤0 ||2

𝜌 = 1 −
2𝜇𝐿𝜂

𝜇 + 𝐿
< 1, 𝜂 ≤

2

𝐿 + 𝜇

Hence,

𝔼 ||𝒗𝒕||
𝟐 → 𝟎 ⇒ 𝔼 ||𝒘𝒕+𝟏 −𝒘𝒕||

𝟐 → 𝟎

SARAH is converging (somewhere) within a single outer loop with fixed “large” learning rate



SARAH One Outer Loop

• 𝑃 is 𝐿-smooth and 𝜇-strongly convex

Recall the update: 𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑣𝑡
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𝔼 ||𝒗𝒕||
𝟐 → 𝟎 ⇒ 𝔼 ||𝒘𝒕+𝟏 −𝒘𝒕||

𝟐 → 𝟎

SARAH is converging (somewhere) within a single outer loop with fixed “large” learning rate

SARAH converges to 𝜖-accurate solution within a single outer loop with fixed “small” 

learning rate for general convex and nonconvex cases (Results and Proofs in the papers)
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RCV Dataset SVRG and SARAH 

need full gradient 

after restart

Variance of SARAH 

goes to zero

Variance of SVRG is 

decreased after each 

restart

SARAH Demonstration
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SARAH is more stable than SVRG!
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SARAH has a similar behavior!

Sensitivity of SVRG and SARAH on “m”
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SARAH One Outer Loop Behavior

Early 

termination



SARAH+
• L. Nguyen, J. Liu, K. Scheinberg, and M. Takac. SARAH: A Novel Method for Machine 

Learning Problems Using Stochastic Recursive Gradient, 2017
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Not for SARAH+!
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For smooth 
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functions

Can we get rid of dependence on “n”?
NOT computing 

Full gradient

SARAH converges to 𝜖-accurate solution within a single outer loop with fixed “small” 

learning rate for nonconvex case (Results and Proofs in the papers)



iSARAH
• L. Nguyen, K. Scheinberg, and M. Takac. Inexact SARAH for Large Scale Machine Learning 

Problems. In preparation. 
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Inexact SARAH (iSARAH)

• For smooth general convex functions: 𝑏 = 𝑚
• For smooth nonconvex functions: 𝑏 = 𝑚
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Convergence Rates Comparisons

For smooth 

(general) convex 

functions

For smooth 

nonconvex 

functions

Total complexity of iSARAH does not depend on “n”

VERY USEFUL for large scale machine learning problems!!!
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