Inexact SARAH for Solving
Stochastic Optimization Problems

Lam M. Nguyen, Katya Scheinberg, Martin Takac

INFORMS Annual Meeting
November 6, 2018

Problem Description

We consider the stochastic optimization problem:

M%@{F(W) = E[f(w;&)]}

Special case, finite-sum (with large n) problem:

1 n
min {F<w) = Egﬁ(W)}

Finite-sum Problem

Optimize a finite sum with large number of elements n

min {F<w> _ %;fi(w)}

Training set: {(x;, y;)}1=, with x; € R%,y; € R

f;- strongly convex: linear regression, binary classification
£,-regularized least squares regression: f;(w) = (x]w — yi)z + % lw]|*
£,-regularized logistic regression: f;(w) = log(1 + exp(—y;x; w)) + g lw]|*

fi- nonconvex: neural networks

Some “gradient” methods to solve this problem
“Full gradient”: Gradient Descent

“Stochastic”: SGD [H. Robbins & S. Monro, 1951]

“Variance Reduction”: SAG [M. Schmidt et. al., 2013], SAGA [A. Defazio et. al.,
2014], SVRG [R. Johnson and T. Zhang, 2013], SARAH [L. Nguyen et. al., 2017]

SARAH Algorithm

SARAH [Nguyen et. al., 2017]
e It also does restarting as SVRG [Johnson & Zhang, 2013]
* It takes recursive gradient estimator

Parameters: the learning rate 7 > 0 and the inner loop size m.
Initialize: w

Iterate:

fors=1.2,... do
wop = zqu_l
vo == 31" V fi(wo)
wy = woy — 11Uo
Iterate:

fort=1..... m — 1 do

Sample 7; uniformly at random from [n]
ve =V fi,(we) =V fi, (we—1) + 041
Wiy = Wy — NV

end for

Set wg = w,; with ¢ chosen uniformly at random from {0, 1, ... -

end for

SARAH Algorithm

SARAH [Nguyen et. al., 2017]
e It also does restarting as SVRG [Johnson & Zhang, 2013]
* It takes recursive gradient estimator

Parameters: the learning rate 7 > 0 and the inner loop size m.
Initialize: w

Iterate:
fors=1.2,... do
wo = lzq_l

wy = wop — Nvy
Iterate:
fort=1..... m — 1 do

Sample 7; uniformly at random from [n]
ve =V fi,(we) = Vfi,(we—1) + vi1
Wiy = Wy — NV

end for

Set wg = w,; with ¢ chosen uniformly at random from {0, 1, ... -

end for

SARAH Algorithm

SARAH [Nguyen et. al., 2017]

It also does restarting as SVRG [Johnson & Zhang, 2013]
It takes recursive gradient estimator

Parameters: the learning rate 7 > 0 and the inner loop size m.
Initialize: w

Iterate:

fors=1.2,... do
wop = zqu_l
vo = % ?_1 V fi(wo)
wy = woy — 11Uo
Iterate:

fort=1..... m — 1 do

Sample 7; uniformly at random from [n]

ve =V fi,(wy) = Vi, (we_1) + ve_q Inner loop
Wei1 = Wy — NV
end for

Set wg = w,; with ¢ chosen uniformly at random from {0, 1, ... -

end for

Outer
loop

SARAH Algorithm

SARAH [Nguyen et. al., 2017]

It also does restarting as SVRG [Johnson & Zhang, 2013]
It takes recursive gradient estimator

Parameters: the learning rate 7 > 0 and the inner loop size m.

Initialize: w
Iterate: Full gradient computing

fors=1.2,... do /
wo = "lz?s_l

n 7
wy = woy — 11Uo
Iterate:

fort=1..... m — 1 do

Sample i; uniformly at random from [n]

vy = Vi, (wy) — Vi, (we_q) + v¢_q Inner loop
Wiyl = Wi — NV
end for

Set wg = w,; with ¢ chosen uniformly at random from {0, 1,...,n

end for

SARAH Algorithm

SARAH [Nguyen et. al., 2017]

It also does restarting as SVRG [Johnson & Zhang, 2013]
It takes recursive gradient estimator

Parameters: the learning rate 7 > 0 and the inner loop size m.

Initialize: w
Iterate: Full gradient computing

fors=1,2.... do /
wo = w s—1

vo = = > iy Vfi(wo)

wy = wg — 1V

Iterate:

fort=1.....m—1do Outer
Sample #; uniformly at random from [n] loop
ve =V fi,(wy) — Vi, (we_1) + ve_q Inner loop
Wi = Wy — N

end for

Set w, = w; with ¢ chosen unifexmly at random from {0, 1,...,m}

end for

N
SARAH update (stochastic gradient computing)

SARAH Algorithm

SARAH [Nguyen et. al., 2017]
e It also does restarting as SVRG [Johnson & Zhang, 2013]
* It takes recursive gradient estimator

Parameters: the learning rate 7 > 0 and the inner loop size m.

Initialize: w
Iterate: Full gradient computing

fors=1,2.... do /
wo = w s—1

vo = = > iy Vfi(wo)

wy = wg — 1V

Iterate:

fort=1.....m—1do Outer
Sample #; uniformly at random from [n] loop
ve = Vi, (we) = Vi, (we—1) + ve—1 Inner loop
Wi = Wy — 1V

end for

Set w, = w; with ¢ chosen unifexmly at random from {0, 1,...,m}

end for
N
ve = Vi, (we) = Vi, (wo) + v SARAH update (stochastic gradient computing)

SVRG

SARAH One Outer Loop

Recall the update: wy, 1 = w; — nv;
e P is L-smooth and u-strongly convex

E[||ve||?] < p* - E[||VF (wo)]|?]

2 2.,2
p:l—(n—L—l),uT] <1, n<-—

* Each f;, Vi, is L-smooth and u-strongly convex
E[]|ve|I?] < p® - E[I[VF (Wo)||?]

=1 2ul <1 n

Hence,
E||[vel|?] = 0 = E[||[Werq — wel|?] = 0

SARAH is converging (somewhere) within a single outer loop with fixed “large” learning rate

SARAH Behavior

600

-400 [~

-600 '
-600

-400

400

600

SARAH Behavior

600 —

200 |

00
-600

-400

400

600

Convergence Rates Comparisons

Strongly convex case: k = L/u is a condition number

Fixed Low
Method Complexity Learning Storage

Rate Cost
GD O (nklog(1/€)) v v
SGD O (1/e) X v
SVRG O ((n+ k)log(1/€)) v v
SAG/SAGA O((n+k)log(1l/e)) v X
SARAH O ((n+k)log(1/€)) v v

SGD: [Robbins & Monro, 1951], [Bottou et. al., 2018], [Nguyen et. al, 2018]
SVRG: [Johnson & Zhang, 2013]

SAG/SAGA: [Schmidt et. al., 2017], [Defazio et. al., 2014]

SARAH: [Nguyen et. al., 2017]

Problem Description

We consider the stochastic optimization problem:

M%@{F(W) = E[f(w;&)]}

Inexact SARAH (iSARAH)

Algorithm 1 Inexact SARAH (iSARAH)

Parameters: the learning rate > 0 and the inner loop size m, the sample set size b.
Initialize: wg.

Iterate:
fors=1,2,....7.do

ws = iISARAH-IN(ws_1,n,m,b).
end for

Output: wr.

Algorithm 2 iISARAH-IN(wq,n, m, b)

Input: wo(= ws_1) the learning rate > 0, the inner loop size m, the sample set size b.
Generate random variables {¢;}7_, i.i.d.
Compute vy = %Z?: V f(wo; G;).
w1 = wp — NUY.
Iterate:
fort=1.....m—1.do
Generate a random variable &
v = Vf(w &) — V(we—1:&) + ve—1.
Wiy] = Wy — N
end for
Set w = w; with ¢ chosen uniformly at random from {0,1,...,m}
Output: w

Inexact SARAH (iSARAH)

Algorithm 1 Inexact SARAH (iSARAH)

Parameters: the learning rate > 0 and the inner loop size m, the sample set size b.
Initialize: wg.

Iterate:
fors=1,2,....7.do

ws = iISARAH-IN(ws_1,n,m,b).
end for

Output: wr.

Algorithm 2 iISARAH-IN(wq,n, m, b)

Input: wo(= ws_1) the learning rate > 0, the inner loop size m, the sample set size b.
Generate random variables {¢;}7_, i.i.d.

P | b arrm e . .
Computelvg = 3 > 7y V f(wp; §). | €= NOT computing Full gradient
w1 = wp — NUp.

Iterate:
fort=1,..., m — 1. do

Generate a random variable &

v = Vf(w &) — V(we—1:&) + ve—1.

Wty1 = Wt — NVt.
end for
Set w = w; with ¢ chosen uniformly at random from {0,1,...,m}
Output: w

Strongly Convex Results

Theorem 1: Suppose that F(w) 1s u-strongly convex and f(w; §) is L-smooth and
convex for every realization of ¢. Consider Algorithm 1 (iISARAH) with the choice

of n, m , and b such that
1 nL 4k — 2

= + + <
CTumm+1) T 2—nL " b2 —nL)

1

(Note that k = L/u). Then, we have
E[||[VF(W)|*] — A < a®([[VF (Wp)||* — A)

where,

and) E[||Vf (w.; ©)]]%]

1—a ~ b2 -1l)

Strongly Convex Results

Theorem 1: Suppose that F(w) 1s u-strongly convex and f(w; §) is L-smooth and
convex for every realization of ¢. Consider Algorithm 1 (iISARAH) with the choice
of n, m , and b such that

1 nL 4k — 2

= + + <1
CTumm+1) T 2—nL " b2 —nL)

(Note that k = L/u). Then, we have
E[||[VF(W)|*] — A < a®([[VF (Wp)||* — A)

where,

and) E[||Vf (w.; ©)]]%]

1—a ~ b2 -1l)

Corollary 1: Letn = 0O (%),m =0(k),b= 0 (max &, K}),S =0 (log G)) in
Theorem 1. Then, the total work complexity to achieve E[||VF (W)||*] < € is

0 ((max (2.} +) 10g (2)).

Nonconvex Results

Theorem 2: Suppose that f(w; &) is L-smooth for every realization of . Consider
Algorithm 2 (iISARAH-IN) with

2 1
< < - _

Then, we have

~ 2 * 1 .
E[|[VF(Wy)]|*] < nm £ 1) [F(wo) — F*] +—\/m—+1E[||Vf(Wo»f)||2]

Nonconvex Results

Theorem 2: Suppose that f(w; &) is L-smooth for every realization of . Consider
Algorithm 2 (iISARAH-IN) with

2 1
< < - _

Then, we have

~ 2 * 1 .
E[|[VF(Wy)]|*] < nm £ 1) [F(wo) — F*] +—\/m—+1E[||Vf(Wo»f)||2]

Corollary 2: Letn = 0O (%) ,b = O(\/ m + 1) in Theorem 2. Then, the total work
complexity to achieve E[||VF (W,)||?] < €is O (eiZ) .

Convergence Rates Comparisons

| Method | Bound | Problem type |
SARAH (multiple loop) O((n+r)log (2)) Finite-sum
SVRG O((n+r)log (£ Finite-sum
For smooth SCSG @ ((min(({ £ n}) +gn§ (13; (3)) | Finitesum
strongly convex SCSG O ((£ +x)log (1)) Expectation
functions SGD 0(2) Expectation
iISARAH (multiple loop) O ((max{=,k} +x)log(=2)) Expectation
| Method [Bound | Problem type | Additional assumption |
SARAH (one loop) o (n + 71.*) Finite-sum None
SVRG O (n+2-) Finite-sum None
For SmOOth SCSG @ (min {% #}) Finite-sum Bounded variance
nonconvex SCSG (@) (ﬁ Expectation Bounded variance
functions SGD o (ﬂlg) Expectation Bounded variance
iISARAH (one loop) o(%) Expectation None

General Convex Results

Assumption: Let wy, Wy, ..., W be the outer iterations of Algorithm 1 (iSARAH).
We assume that there exist M > 0 and N > 0 such that forall k = 0,1, ..., s

F(wy) — F(w,) < M||[VF(W) || + N

Theorem 3: f(w; &) is L-smooth and convex for every realization of ¢. Consider
Algorithm 1 (iISARAH) with the choice of n, m , and b such that

__2M _mL BLM-1
T m+ 1) 2=l b2 -1lL)

(Note that k = L/u). Then, we have
E[||[VF(W)||*] — Ac < a®(||VF (Wo)||* — Ac)

where,
o 2N 8LN

and 0= D T bz D) T bz = D)

A E[||Vf (w.; E)I%]

zl—ac

Corollary 1: Letn = 0O (%) ,m=0 (i) ,b=0 G) ,s=0 (log (é)) in Theorem 3.
Then, the total work complexity to achieve E[||VF (W¢)||?] < €is O e log (i)) :

Convergence Rates Comparisons

For smooth general convex functions

Method Bound Problem type | Additional assumption
SCSG @ (6%) Expectation None
SGD @ (6%) Expectation Bounded variance
iSARAH (one loop) O 6%) Expectation None
iSARAH (multiple loop) @, (% log (%)) Expectation Assumption 4

References

L. Bottou, F. E. Curtis, and J. Nocedal. Optimization Methods for Large-scale Machine Learning. SIAM Review, 2018

A. Defazio, F. Bach, S. Lacoste-Julien. SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly
Convex Composite Objectives. NIPS 2014

R. Johnson and T. Zhang. Accelerating Stochastic Gradient Descent using Predictive Variance Reduction. NIPS 2013.

N. Le Roux, M. Schmidt, and F. Bach. 4 Stochastic Gradient Method with an Exponential Convergence Rate for Finite
Training Sets. NIPS 2012

L. Lei and M. Jordan. Less than a Single Pass. Stochastically Controlled Stochastic Gradient. AISTATS 2017
L. Lei, C. Ju, J. Chen, and M. 1. Jordan. Non-convex finite-sum optimization via SCSG methods. NIPS 2017
H. Robbins and S. Monro. 4 Stochastic Approximation Method. 1951

L. Nguyen, J. Liu, K. Scheinberg, and M. Takac. SARAH: A Novel Method for Machine Learning Problems Using
Stochastic Recursive Gradient. ICML 2017

L. Nguyen, P. H. Nguyen, M. van Dijk, P. Richtarik, K. Scheinberg, and M. Takac. SGD and Hogwild! Convergence
Without the Bounded Gradients Assumption. ICML 2018

S. J. Reddi, A. Hefny, S. Sra, B. Poczos, and A. J. Smola. Stochastic variance reduction for nonconvex optimization.
ICML 2016

M. Schmidt, N. Le Roux, and F. Bach. Minimizing finite sums with the stochastic average gradient. Mathematical
Programming 2017

24

THANK YOU !!!

Lam M. Nguyen

LamNguyen. MLTD@gmail.com
https://lamnguyen-mltd.github.io/

