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Problem Description

We consider the stochastic optimization problem:

M%@{F(W) = E[f(w;&)]}

Special case, finite-sum (with large n) problem:

1 n
min {F<w) = Egﬁ(W)}



Finite-sum Problem

Optimize a finite sum with large number of elements n

min {F<w> _ %;fi(w)}

Training set: {(x;, y;)}1=, with x; € R%,y; € R

f;- strongly convex: linear regression, binary classification
£,-regularized least squares regression: f;(w) = (x]w — yi)z + % lw]|*
£,-regularized logistic regression: f;(w) = log(1 + exp(—y;x; w)) + g lw]|*

fi- nonconvex: neural networks

Some “gradient” methods to solve this problem
“Full gradient”: Gradient Descent

“Stochastic”: SGD [H. Robbins & S. Monro, 1951]

“Variance Reduction”: SAG [M. Schmidt et. al., 2013], SAGA [A. Defazio et. al.,
2014], SVRG [R. Johnson and T. Zhang, 2013], SARAH [L. Nguyen et. al., 2017]



SARAH Algorithm

SARAH [Nguyen et. al., 2017]
e It also does restarting as SVRG [Johnson & Zhang, 2013]
* It takes recursive gradient estimator

Parameters: the learning rate 7 > 0 and the inner loop size m.
Initialize: w

Iterate:

fors=1.2,... do
wop = zqu_l
vo == 31" V fi(wo)
wy = woy — 11Uo
Iterate:

fort=1..... m — 1 do

Sample 7; uniformly at random from [n]
ve =V fi,(we) =V fi, (we—1) + 041
Wiy = Wy — NV

end for

Set wg = w,; with ¢ chosen uniformly at random from {0, 1, ... -

end for
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loop




SARAH Algorithm

SARAH [Nguyen et. al., 2017]

It also does restarting as SVRG [Johnson & Zhang, 2013]
It takes recursive gradient estimator

Parameters: the learning rate 7 > 0 and the inner loop size m.

Initialize: w
Iterate: Full gradient computing

fors=1.2,... do /
wo = "lz?s_l

n 7
wy = woy — 11Uo
Iterate:

fort=1..... m — 1 do

Sample i; uniformly at random from [n]

vy = Vi, (wy) — Vi, (we_q) + v¢_q Inner loop
Wiyl = Wi — NV
end for

Set wg = w,; with ¢ chosen uniformly at random from {0, 1,...,n

end for




SARAH Algorithm

SARAH [Nguyen et. al., 2017]

It also does restarting as SVRG [Johnson & Zhang, 2013]
It takes recursive gradient estimator

Parameters: the learning rate 7 > 0 and the inner loop size m.

Initialize: w
Iterate: Full gradient computing

fors=1,2.... do /
wo = w s—1

vo = = > iy Vfi(wo)

wy = wg — 1V

Iterate:

fort=1.....m—1do Outer
Sample #; uniformly at random from [n] loop
ve =V fi,(wy) — Vi, (we_1) + ve_q Inner loop
Wi = Wy — N

end for

Set w, = w; with ¢ chosen unifexmly at random from {0, 1,...,m}

end for

N
SARAH update (stochastic gradient computing)



SARAH Algorithm

SARAH [Nguyen et. al., 2017]
e It also does restarting as SVRG [Johnson & Zhang, 2013]
* It takes recursive gradient estimator

Parameters: the learning rate 7 > 0 and the inner loop size m.

Initialize: w
Iterate: Full gradient computing

fors=1,2.... do /
wo = w s—1

vo = = > iy Vfi(wo)

wy = wg — 1V

Iterate:

fort=1.....m—1do Outer
Sample #; uniformly at random from [n] loop
ve = Vi, (we) = Vi, (we—1) + ve—1 Inner loop
Wi = Wy — 1V

end for

Set w, = w; with ¢ chosen unifexmly at random from {0, 1,...,m}

end for
N
ve = Vi, (we) = Vi, (wo) + v SARAH update (stochastic gradient computing)

SVRG



SARAH One Outer Loop

Recall the update: wy, 1 = w; — nv;
e P is L-smooth and u-strongly convex

E[||ve||?] < p* - E[||VF (wo)]|?]

2 2.,2
p:l—(n—L—l),uT] <1, n<-—

* Each f;, Vi, is L-smooth and u-strongly convex
E[]|ve|I?] < p® - E[I[VF (Wo)||?]

=1 2ul <1 n

Hence,
E||[vel|?] = 0 = E[||[Werq — wel|?] = 0

SARAH is converging (somewhere) within a single outer loop with fixed “large” learning rate



SARAH Behavior
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SARAH Behavior

600 —

200 |

00
-600

-400

400

600



Convergence Rates Comparisons

Strongly convex case: k = L/u is a condition number

Fixed Low
Method Complexity Learning Storage

Rate Cost
GD O (nklog(1/€)) v v
SGD O (1/e) X v
SVRG O ((n+ k)log(1/€)) v v
SAG/SAGA O((n+k)log(1l/e)) v X
SARAH O ((n+k)log(1/€)) v v

SGD: [Robbins & Monro, 1951], [Bottou et. al., 2018], [Nguyen et. al, 2018]
SVRG: [Johnson & Zhang, 2013]

SAG/SAGA: [Schmidt et. al., 2017], [Defazio et. al., 2014]

SARAH: [Nguyen et. al., 2017]



Problem Description

We consider the stochastic optimization problem:

M%@{F(W) = E[f(w;&)]}



Inexact SARAH (iSARAH)

Algorithm 1 Inexact SARAH (iSARAH)

Parameters: the learning rate > 0 and the inner loop size m, the sample set size b.
Initialize: wg.

Iterate:
fors=1,2,....7.do

ws = iISARAH-IN(ws_1,n,m,b).
end for

Output: wr.

Algorithm 2 iISARAH-IN(wq,n, m, b)

Input: wo(= ws_1) the learning rate > 0, the inner loop size m, the sample set size b.
Generate random variables {¢;}7_, i.i.d.
Compute vy = %Z?:  V f(wo; G;).
w1 = wp — NUY.
Iterate:
fort=1.....m—1.do
Generate a random variable &
v = Vf(w &) — V(we—1:&) + ve—1.
Wiy] = Wy — N
end for
Set w = w; with ¢ chosen uniformly at random from {0,1,...,m}
Output: w




Inexact SARAH (iSARAH)

Algorithm 1 Inexact SARAH (iSARAH)

Parameters: the learning rate > 0 and the inner loop size m, the sample set size b.
Initialize: wg.

Iterate:
fors=1,2,....7.do

ws = iISARAH-IN(ws_1,n,m,b).
end for

Output: wr.

Algorithm 2 iISARAH-IN(wq,n, m, b)

Input: wo(= ws_1) the learning rate > 0, the inner loop size m, the sample set size b.
Generate random variables {¢;}7_, i.i.d.

P | b arrm e . .
Computelvg = 3 > 7y V f(wp; §). | €= NOT computing Full gradient
w1 = wp — NUp.

Iterate:
fort=1,..., m — 1. do

Generate a random variable &

v = Vf(w &) — V(we—1:&) + ve—1.

Wty1 = Wt — NVt.
end for
Set w = w; with ¢ chosen uniformly at random from {0,1,...,m}
Output: w




Strongly Convex Results

Theorem 1: Suppose that F(w) 1s u-strongly convex and f(w; §) is L-smooth and
convex for every realization of ¢. Consider Algorithm 1 (iISARAH) with the choice

of n, m , and b such that
1 nL 4k — 2

= + + <
CTumm+1) T 2—nL " b2 —nL)

1

(Note that k = L/u). Then, we have
E[||[VF(W)|*] — A < a®([[VF (Wp)||* — A)

where,

and ) E[||Vf (w.; ©)]]%]

1—a ~ b2 -1l)



Strongly Convex Results

Theorem 1: Suppose that F(w) 1s u-strongly convex and f(w; §) is L-smooth and
convex for every realization of ¢. Consider Algorithm 1 (iISARAH) with the choice
of n, m , and b such that

1 nL 4k — 2

= + + <1
CTumm+1) T 2—nL " b2 —nL)

(Note that k = L/u). Then, we have
E[||[VF(W)|*] — A < a®([[VF (Wp)||* — A)

where,

and ) E[||Vf (w.; ©)]]%]

1—a ~ b2 -1l)

Corollary 1: Letn = 0O (%),m =0(k),b= 0 (max &, K}),S =0 (log G)) in
Theorem 1. Then, the total work complexity to achieve E[||VF (W)||*] < € is

0 ((max (2.} + ) 10g (2)).



Nonconvex Results

Theorem 2: Suppose that f(w; &) is L-smooth for every realization of . Consider
Algorithm 2 (iISARAH-IN) with

2 1
< < - _

Then, we have

~ 2 * 1 .
E[|[VF(Wy)]|*] < nm £ 1) [F(wo) — F*] +—\/m—+1E[||Vf(Wo»f)||2]




Nonconvex Results

Theorem 2: Suppose that f(w; &) is L-smooth for every realization of . Consider
Algorithm 2 (iISARAH-IN) with

2 1
< < - _

Then, we have

~ 2 * 1 .
E[|[VF(Wy)]|*] < nm £ 1) [F(wo) — F*] +—\/m—+1E[||Vf(Wo»f)||2]

Corollary 2: Letn = 0O (%) ,b = O(\/ m + 1) in Theorem 2. Then, the total work
complexity to achieve E[||VF (W,)||?] < €is O (eiZ) .



Convergence Rates Comparisons

| Method | Bound | Problem type |
SARAH (multiple loop) O((n+r)log (2)) Finite-sum
SVRG O((n+r)log (£ Finite-sum
For smooth SCSG @ ((min( ({ £ n}) +gn§ (13; (3)) | Finitesum
strongly convex SCSG O ((£ +x)log (1)) Expectation
functions SGD 0(2) Expectation
iISARAH (multiple loop) O ((max{=,k} +x)log(=2)) Expectation
| Method [ Bound | Problem type | Additional assumption |
SARAH (one loop) o (n + 71.*) Finite-sum None
SVRG O (n+2-) Finite-sum None
For SmOOth SCSG @ (min {% #}) Finite-sum Bounded variance
nonconvex SCSG (@) (ﬁ Expectation Bounded variance
functions SGD o (ﬂlg) Expectation Bounded variance
iISARAH (one loop) o(%) Expectation None




General Convex Results

Assumption: Let wy, Wy, ..., W be the outer iterations of Algorithm 1 (iSARAH).
We assume that there exist M > 0 and N > 0 such that forall k = 0,1, ..., s

F(wy) — F(w,) < M||[VF(W) || + N

Theorem 3: f(w; &) is L-smooth and convex for every realization of ¢. Consider
Algorithm 1 (iISARAH) with the choice of n, m , and b such that

__2M _mL BLM-1
T m+ 1) 2=l b2 -1lL)

(Note that k = L/u). Then, we have
E[||[VF(W)||*] — Ac < a®(||VF (Wo)||* — Ac)

where,
o 2N 8LN

and 0= D T bz D) T bz = D)

A E[||Vf (w.; E)I%]

zl—ac

Corollary 1: Letn = 0O (%) ,m=0 (i) ,b=0 G) ,s=0 (log (é)) in Theorem 3.
Then, the total work complexity to achieve E[||VF (W¢)||?] < €is O e log (i)) :



Convergence Rates Comparisons

For smooth general convex functions

Method Bound Problem type | Additional assumption
SCSG @ ( 6% ) Expectation None
SGD @ (6%) Expectation Bounded variance
iSARAH (one loop) O 6%) Expectation None
iSARAH (multiple loop) @, ( % log (%)) Expectation Assumption 4
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