Inexact SARAH for Solving Stochastic Optimization Problems

Lam M. Nguyen, Katya Scheinberg, Martin Takáč

INFORMS Annual Meeting November 6, 2018

We consider the stochastic optimization problem:

 $\min_{w \in \mathbb{R}^d} \{ F(w) = \mathbb{E}[f(w;\xi)] \}$

Special case, finite-sum (with large *n*) problem:

$$\min_{w \in \mathbb{R}^d} \left\{ F(w) = \frac{1}{n} \sum_{i=1}^n f_i(w) \right\}$$

Optimize a finite sum with large number of elements n

$$\min_{w \in \mathbb{R}^d} \left\{ F(w) = \frac{1}{n} \sum_{i=1}^n f_i(w) \right\}$$

Training set: $\{(x_i, y_i)\}_{i=1}^n$ with $x_i \in \mathbb{R}^d$, $y_i \in \mathbb{R}$

 f_i - **strongly convex**: linear regression, binary classification ℓ_2 -regularized least squares regression: $f_i(w) = (x_i^T w - y_i)^2 + \frac{\lambda}{2} ||w||^2$ ℓ_2 -regularized logistic regression: $f_i(w) = \log(1 + \exp(-y_i x_i^T w)) + \frac{\lambda}{2} ||w||^2$ f_i - **nonconvex**: neural networks

Some "gradient" methods to solve this problem

```
"Full gradient": Gradient Descent
```

```
"Stochastic": SGD [H. Robbins & S. Monro, 1951]
```

"Variance Reduction": SAG [M. Schmidt et. al., 2013], SAGA [A. Defazio et. al., 2014], SVRG [R. Johnson and T. Zhang, 2013], SARAH [L. Nguyen et. al., 2017]

- It also does restarting as SVRG [Johnson & Zhang, 2013]
- It takes recursive gradient estimator

Parameters: the learning rate $\eta > 0$ and the inner loop size m. Initialize: \tilde{w}_0 Iterate: for s = 1, 2, ... do $w_0 = \tilde{w}_{s-1}$ $v_0 = \frac{1}{n} \sum_{i=1}^n \nabla f_i(w_0)$ $w_1 = w_0 - \eta v_0$ Iterate: for t = 1, ..., m - 1 do Sample i_t uniformly at random from [n] $v_{t} = \nabla f_{i_{t}}(w_{t}) - \nabla f_{i_{t}}(w_{t-1}) + v_{t-1}$ $w_{t+1} = w_t - \eta v_t$ end for Set $\tilde{w}_s = w_t$ with t chosen uniformly at random from $\{0, 1, \dots, m\}$ end for

- It also does restarting as SVRG [Johnson & Zhang, 2013]
- It takes recursive gradient estimator

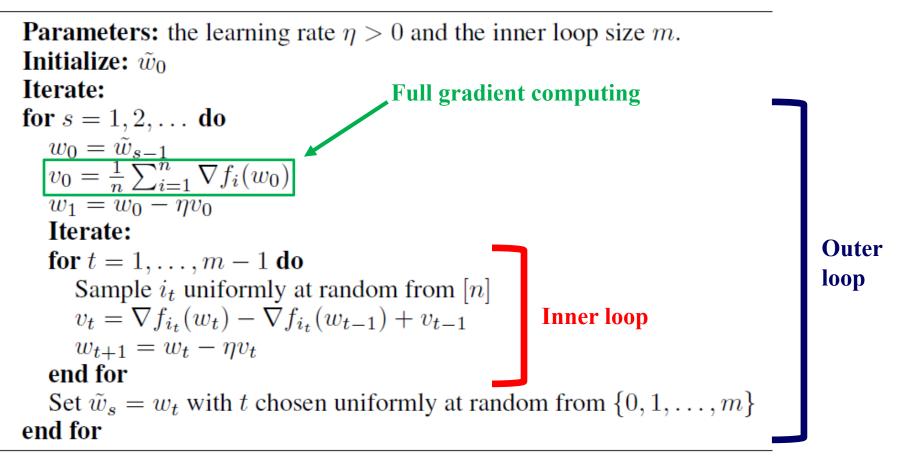
Parameters: the learning rate $\eta > 0$ and the inner loop size m. Initialize: \tilde{w}_0 Iterate: for s = 1, 2, ... do $w_0 = \tilde{w}_{s-1}$ $v_0 = \frac{1}{n} \sum_{i=1}^n \nabla f_i(w_0)$ $w_1 = w_0 - \eta v_0$ Iterate: for t = 1, ..., m - 1 do Sample i_t uniformly at random from [n] $v_t = \nabla f_{i_t}(w_t) - \nabla f_{i_t}(w_{t-1}) + v_{t-1}$ $w_{t+1} = w_t - \eta v_t$ end for Set $\tilde{w}_s = w_t$ with t chosen uniformly at random from $\{0, 1, \dots, m\}$ end for

Outer loop

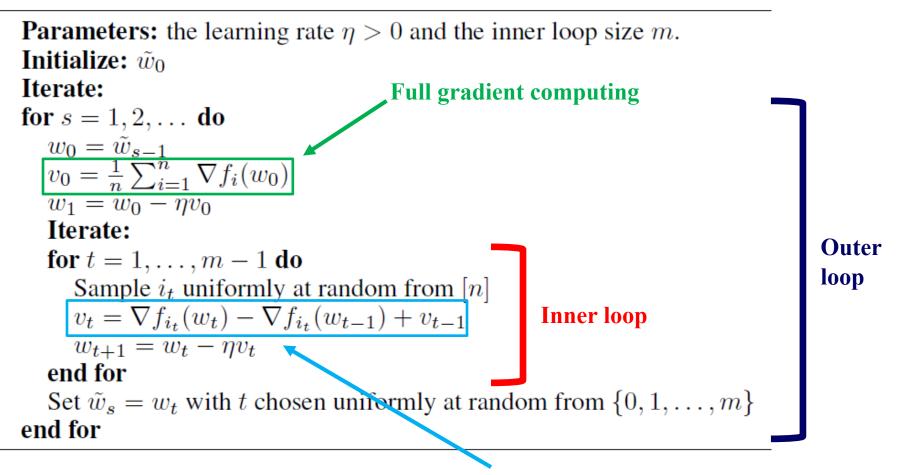
- It also does restarting as SVRG [Johnson & Zhang, 2013]
- It takes recursive gradient estimator

Parameters: the learning rate $\eta > 0$ and the inner loop size m. Initialize: \tilde{w}_0 Iterate: for s = 1, 2, ... do $w_0 = \tilde{w}_{s-1}$ $v_0 = \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(w_0)$ $w_1 = w_0 - \eta v_0$ Iterate: Outer for t = 1, ..., m - 1 do loop Sample i_t uniformly at random from [n] $v_{t} = \nabla f_{i_{t}}(w_{t}) - \nabla f_{i_{t}}(w_{t-1}) + v_{t-1}$ **Inner** loop $w_{t+1} = w_t - \eta v_t$ end for Set $\tilde{w}_s = w_t$ with t chosen uniformly at random from $\{0, 1, \dots, m\}$ end for

- It also does restarting as SVRG [Johnson & Zhang, 2013]
- It takes recursive gradient estimator



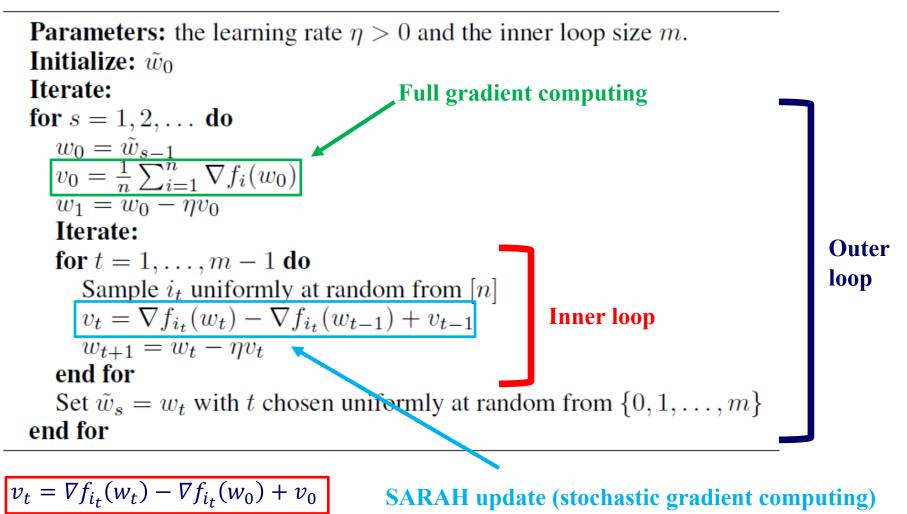
- It also does restarting as SVRG [Johnson & Zhang, 2013]
- It takes recursive gradient estimator



SARAH update (stochastic gradient computing)

- It also does restarting as SVRG [Johnson & Zhang, 2013]
- It takes recursive gradient estimator

SVRG



Recall the update: $w_{t+1} = w_t - \eta v_t$

E

- *P* is *L*-smooth and μ -strongly convex $\mathbb{E}[||v_t||^2] \le \rho^t \cdot \mathbb{E}[||\nabla F(w_0)||^2]$ $\rho = 1 - \left(\frac{2}{\eta L} - 1\right)\mu^2\eta^2 < 1, \qquad \eta < \frac{2}{L}$
- Each f_i , $\forall i$, is *L*-smooth and μ -strongly convex

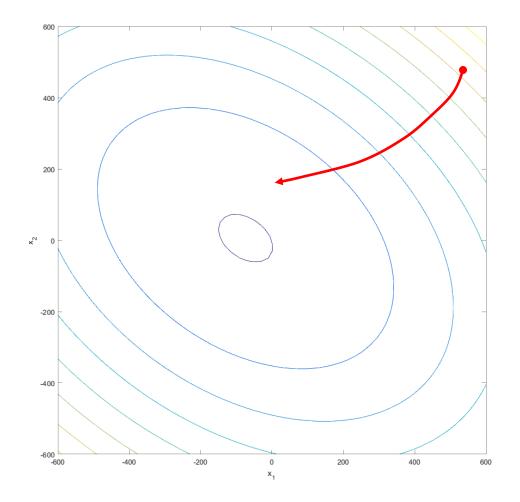
$$\begin{split} [||v_t||^2] &\leq \rho^t \cdot \mathbb{E}[||\nabla F(w_0)||^2] \\ \rho &= 1 - \frac{2\mu L\eta}{\mu + L} < 1, \qquad \qquad \eta \leq \frac{2}{L + \mu} \end{split}$$

Hence,

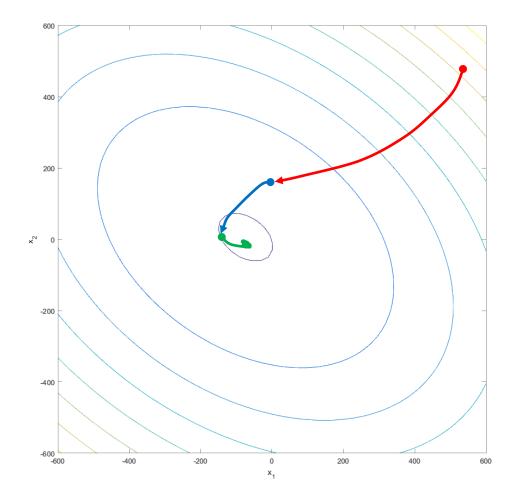
$$\mathbb{E}\big[||\boldsymbol{v}_t||^2\big] \to \mathbf{0} \Rightarrow \mathbb{E}\big[||\boldsymbol{w}_{t+1} - \boldsymbol{w}_t||^2\big] \to \mathbf{0}$$

SARAH is converging (somewhere) within a single outer loop with fixed "large" learning rate

SARAH Behavior



SARAH Behavior



Strongly convex case: $\kappa = L/\mu$ is a condition number

		Fixed	Low
Method	Complexity	Learning	Storage
		Rate	Cost
GD	$\mathcal{O}\left(n\kappa\log\left(1/\epsilon\right)\right)$	1	✓
SGD	$\mathcal{O}\left(1/\epsilon ight)$	×	✓
SVRG	$\mathcal{O}\left(\left(n+\kappa\right)\log\left(1/\epsilon\right)\right)$	<i>✓</i>	<i>✓</i>
SAG/SAGA	$\mathcal{O}\left(\left(n+\kappa\right)\log\left(1/\epsilon\right)\right)$	✓	×
SARAH	$\mathcal{O}\left(\left(n+\kappa\right)\log\left(1/\epsilon\right)\right)$	1	1

SGD: [Robbins & Monro, 1951], [Bottou et. al., 2018], [Nguyen et. al, 2018]
SVRG: [Johnson & Zhang, 2013]
SAG/SAGA: [Schmidt et. al., 2017], [Defazio et. al., 2014]
SARAH: [Nguyen et. al., 2017]

We consider the stochastic optimization problem:

 $\min_{w \in \mathbb{R}^d} \{ F(w) = \mathbb{E}[f(w;\xi)] \}$

Inexact SARAH (iSARAH)

Algorithm 1 Inexact SARAH (iSARAH)

Parameters: the learning rate $\eta > 0$ and the inner loop size m, the sample set size b. Initialize: \tilde{w}_0 . Iterate: for s = 1, 2, ..., T, do $\tilde{w}_s = iSARAH-IN(\tilde{w}_{s-1}, \eta, m, b)$. end for Output: \tilde{w}_T .

Algorithm 2 iSARAH-IN (w_0, η, m, b)

Input: $w_0(=\tilde{w}_{s-1})$ the learning rate $\eta > 0$, the inner loop size m, the sample set size b. Generate random variables $\{\zeta_i\}_{i=1}^b$ i.i.d. Compute $v_0 = \frac{1}{b} \sum_{i=1}^b \nabla f(w_0; \zeta_i)$. $w_1 = w_0 - \eta v_0$. **Iterate: for** $t = 1, \dots, m-1$, **do** Generate a random variable ξ_t $v_t = \nabla f(w_t; \xi_t) - \nabla f(w_{t-1}; \xi_t) + v_{t-1}$. $w_{t+1} = w_t - \eta v_t$. **end for** Set $\tilde{w} = w_t$ with t chosen uniformly at random from $\{0, 1, \dots, m\}$ **Output:** \tilde{w}

Inexact SARAH (iSARAH)

Algorithm 1 Inexact SARAH (iSARAH)

Parameters: the learning rate $\eta > 0$ and the inner loop size m, the sample set size b. Initialize: \tilde{w}_0 . Iterate: for s = 1, 2, ..., T, do $\tilde{w}_s = iSARAH-IN(\tilde{w}_{s-1}, \eta, m, b)$. end for Output: \tilde{w}_T . Algorithm 2 iSARAH-IN(w_0, η, m, b)

Input: $w_0(=\tilde{w}_{s-1})$ the learning rate $\eta > 0$, the inner loop size m, the sample set size b. Generate random variables $\{\zeta_i\}_{i=1}^b$ i.i.d. Compute $v_0 = \frac{1}{b} \sum_{i=1}^b \nabla f(w_0; \zeta_i)$. $w_1 = w_0 - \eta v_0$. **Iterate:** for $t = 1, \dots, m - 1$, do Generate a random variable ξ_t $v_t = \nabla f(w_t; \xi_t) - \nabla f(w_{t-1}; \xi_t) + v_{t-1}$. $w_{t+1} = w_t - \eta v_t$. end for Set $\tilde{w} = w_t$ with t chosen uniformly at random from $\{0, 1, \dots, m\}$ Output: \tilde{w}

Theorem 1: Suppose that F(w) is μ -strongly convex and $f(w; \xi)$ is *L*-smooth and convex for every realization of ξ . Consider **Algorithm 1 (iSARAH)** with the choice of η , m, and b such that

$$\alpha = \frac{1}{\mu\eta(m+1)} + \frac{\eta L}{2 - \eta L} + \frac{4\kappa - 2}{b(2 - \eta L)} < 1$$

(Note that $\kappa = L/\mu$). Then, we have

$$\mathbb{E}[||\nabla F(\widetilde{w}_s)||^2] - \Delta \le \alpha^s(||\nabla F(\widetilde{w}_0)||^2 - \Delta)$$

where,

$$\Delta = \frac{\delta}{1 - \alpha} \quad \text{and} \quad \delta = \frac{4}{b(2 - \eta L)} \mathbb{E}[||\nabla f(w_*; \xi)||^2]$$

Theorem 1: Suppose that F(w) is μ -strongly convex and $f(w; \xi)$ is *L*-smooth and convex for every realization of ξ . Consider **Algorithm 1 (iSARAH)** with the choice of η , m, and b such that

$$\alpha = \frac{1}{\mu\eta(m+1)} + \frac{\eta L}{2 - \eta L} + \frac{4\kappa - 2}{b(2 - \eta L)} < 1$$

(Note that $\kappa = L/\mu$). Then, we have

$$\mathbb{E}[||\nabla F(\widetilde{w}_s)||^2] - \Delta \le \alpha^s(||\nabla F(\widetilde{w}_0)||^2 - \Delta)$$

where,

$$\Delta = \frac{\delta}{1 - \alpha} \quad \text{and} \quad \delta = \frac{4}{b(2 - \eta L)} \mathbb{E}[||\nabla f(w_*; \xi)||^2]$$

Corollary 1: Let $\eta = \mathcal{O}\left(\frac{1}{L}\right), m = \mathcal{O}(\kappa), b = \mathcal{O}\left(\max\left\{\frac{1}{\epsilon}, \kappa\right\}\right), s = \mathcal{O}\left(\log\left(\frac{1}{\epsilon}\right)\right)$ in Theorem 1. Then, the total work complexity to achieve $\mathbb{E}[||\nabla F(\widetilde{w}_s)||^2] \leq \epsilon$ is $\mathcal{O}\left(\left(\max\left\{\frac{1}{\epsilon}, \kappa\right\} + \kappa\right)\log\left(\frac{1}{\epsilon}\right)\right).$ **Theorem 2**: Suppose that $f(w; \xi)$ is *L*-smooth for every realization of ξ . Consider **Algorithm 2 (iSARAH-IN)** with

$$\eta \le \frac{2}{L\left(\sqrt{1+4m}+1\right)} \le \frac{1}{L} \qquad \text{and} \qquad b = \sqrt{m+1}$$

Then, we have

$$\mathbb{E}[||\nabla F(\widetilde{w}_{s})||^{2}] \leq \frac{2}{\eta(m+1)} [F(w_{0}) - F^{*}] + \frac{1}{\sqrt{m+1}} \mathbb{E}[||\nabla f(w_{0};\xi)||^{2}]$$

Theorem 2: Suppose that $f(w; \xi)$ is *L*-smooth for every realization of ξ . Consider **Algorithm 2 (iSARAH-IN)** with

$$\eta \le \frac{2}{L\left(\sqrt{1+4m}+1\right)} \le \frac{1}{L} \qquad \text{and} \qquad b = \sqrt{m+1}$$

Then, we have

$$\mathbb{E}[||\nabla F(\widetilde{w}_{s})||^{2}] \leq \frac{2}{\eta(m+1)} [F(w_{0}) - F^{*}] + \frac{1}{\sqrt{m+1}} \mathbb{E}[||\nabla f(w_{0};\xi)||^{2}]$$

Corollary 2: Let $\eta = \mathcal{O}\left(\frac{1}{L}\right)$, $b = \mathcal{O}\left(\sqrt{m+1}\right)$ in Theorem 2. Then, the total work complexity to achieve $\mathbb{E}[||\nabla F(\widetilde{w}_s)||^2] \le \epsilon$ is $\mathcal{O}\left(\frac{1}{\epsilon^2}\right)$.

Convergence Rates Comparisons

For smooth			
strongly convex			
functions			

Method	Bound	Problem type
SARAH (multiple loop)	$O\left((n+\kappa)\log\left(\frac{1}{\epsilon}\right)\right)$	Finite-sum
SVRG	$O\left((n+\kappa)\log\left(\frac{1}{\epsilon}\right)\right)$	Finite-sum
SCSG	$\mathcal{O}\left(\left(\min\left\{\frac{\kappa}{\epsilon},n\right\}+\kappa\right)\log\left(\frac{1}{\epsilon}\right)\right)$	Finite-sum
SCSG	$\mathcal{O}\left(\left(\frac{\kappa}{\epsilon} + \kappa\right)\log\left(\frac{1}{\epsilon}\right)\right)$	Expectation
SGD	$O\left(\frac{1}{\epsilon}\right)$	Expectation
iSARAH (multiple loop)	$\mathcal{O}\left(\left(\max\left\{\frac{1}{\epsilon},\kappa\right\}+\kappa\right)\log\left(\frac{1}{\epsilon}\right)\right)$	Expectation

For smooth nonconvex functions

Method	Bound	Problem type	Additional assumption
SARAH (one loop)	$O\left(n + \frac{1}{\epsilon^2}\right)$	Finite-sum	None
SVRG	$O\left(n + \frac{n^{2/3}}{\epsilon}\right)$	Finite-sum	None
SCSG	$\mathcal{O}\left(\min\left\{\frac{1}{\epsilon^{5/3}}, \frac{n^{2/3}}{\epsilon}\right\}\right)$	Finite-sum	Bounded variance
SCSG	$O\left(\frac{1}{\epsilon^{5/3}}\right)$	Expectation	Bounded variance
SGD	$O\left(\frac{1}{\epsilon^2}\right)$	Expectation	Bounded variance
iSARAH (one loop)	$O\left(\frac{1}{\epsilon^2}\right)$	Expectation	None

Assumption: Let $\tilde{w}_0, \tilde{w}_1, ..., \tilde{w}_s$ be the outer iterations of Algorithm 1 (iSARAH). We assume that there exist M > 0 and N > 0 such that for all k = 0, 1, ..., s

 $F(\widetilde{w}_k) - F(w_*) \le M ||\nabla F(\widetilde{w}_k)||^2 + N$

Theorem 3: $f(w; \xi)$ is *L*-smooth and convex for every realization of ξ . Consider **Algorithm 1 (iSARAH)** with the choice of η , *m*, and *b* such that

$$\alpha = \frac{2M}{\eta(m+1)} + \frac{\eta L}{2 - \eta L} + \frac{8LM - 1}{b(2 - \eta L)} < 1$$

(Note that $\kappa = L/\mu$). Then, we have

$$\mathbb{E}[||\nabla F(\widetilde{w}_s)||^2] - \Delta_c \le \alpha^s(||\nabla F(\widetilde{w}_0)||^2 - \Delta_c)$$

where,

$$\Delta_{c} = \frac{\delta_{c}}{1 - \alpha_{c}} \text{ and } \delta = \frac{2N}{\eta(m+1)} + \frac{8LN}{b(2 - \eta L)} + \frac{4}{b(2 - \eta L)} \mathbb{E}[||\nabla f(w_{*};\xi)||^{2}]$$

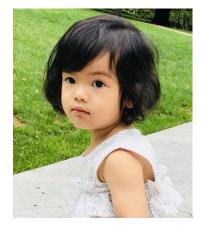
Corollary 1: Let $\eta = \mathcal{O}\left(\frac{1}{L}\right), m = \mathcal{O}\left(\frac{1}{\epsilon}\right), b = \mathcal{O}\left(\frac{1}{\epsilon}\right), s = \mathcal{O}\left(\log\left(\frac{1}{\epsilon}\right)\right)$ in Theorem 3. Then, the total work complexity to achieve $\mathbb{E}[||\nabla F(\widetilde{w}_s)||^2] \le \epsilon$ is $\mathcal{O}\left(\frac{1}{\epsilon}\log\left(\frac{1}{\epsilon}\right)\right)$.

For smooth general convex functions

Method	Bound	Problem type	Additional assumption
SCSG	$\mathcal{O}\left(rac{1}{\epsilon^2} ight)$	Expectation	None
SGD	$\mathcal{O}\left(rac{1}{\epsilon^2} ight)$	Expectation	Bounded variance
iSARAH (one loop)	$\mathcal{O}\left(\frac{1}{\epsilon^2}\right)$	Expectation	None
iSARAH (multiple loop)	$\mathcal{O}\left(\frac{1}{\epsilon}\log\left(\frac{1}{\epsilon}\right)\right)$	Expectation	Assumption 4

References

- L. Bottou, F. E. Curtis, and J. Nocedal. Optimization Methods for Large-scale Machine Learning. SIAM Review, 2018
- A. Defazio, F. Bach, S. Lacoste-Julien. SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives. NIPS 2014
- R. Johnson and T. Zhang. Accelerating Stochastic Gradient Descent using Predictive Variance Reduction. NIPS 2013.
- N. Le Roux, M. Schmidt, and F. Bach. A Stochastic Gradient Method with an Exponential Convergence Rate for Finite Training Sets. NIPS 2012
- L. Lei and M. Jordan. Less than a Single Pass: Stochastically Controlled Stochastic Gradient. AISTATS 2017
- L. Lei, C. Ju, J. Chen, and M. I. Jordan. *Non-convex finite-sum optimization via SCSG methods*. NIPS 2017
- H. Robbins and S. Monro. A Stochastic Approximation Method. 1951
- L. Nguyen, J. Liu, K. Scheinberg, and M. Takac. SARAH: A Novel Method for Machine Learning Problems Using Stochastic Recursive Gradient. ICML 2017
- L. Nguyen, P. H. Nguyen, M. van Dijk, P. Richtarik, K. Scheinberg, and M. Takac. *SGD and Hogwild! Convergence Without the Bounded Gradients Assumption*. ICML 2018
- S. J. Reddi, A. Hefny, S. Sra, B. Póczos, and A. J. Smola. *Stochastic variance reduction for nonconvex optimization*. ICML 2016
- M. Schmidt, N. Le Roux, and F. Bach. *Minimizing finite sums with the stochastic average gradient*. Mathematical Programming 2017



SARAH

THANK YOU !!!

Lam M. Nguyen

LamNguyen.MLTD@gmail.com https://lamnguyen-mltd.github.io/