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Inexact SARAH for Solving 
Stochastic Optimization Problems
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Problem Description

We consider the stochastic optimization problem:

min
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Special case, finite-sum (with large n) problem:
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Training set: 5., 7. ./0
1 with 5. ∈ ℝ8, 7. ∈ ℝ

ℓ:-regularized least squares regression: 2. ) = 5.;) − 7.
: + >

: ) :

ℓ:-regularized logistic regression: 2. ) = log(1 + exp(−7.5.;))) + >
: ) :

2.- strongly convex: linear regression, binary classification 

2.- nonconvex: neural networks

Finite-sum Problem
Optimize a finite sum with large number of elements ,

“Full gradient”: Gradient Descent

“Stochastic”: SGD [H. Robbins & S. Monro, 1951]

“Variance Reduction”: SAG [M. Schmidt et. al., 2013], SAGA [A. Defazio et. al., 
2014], SVRG [R. Johnson and T. Zhang, 2013], SARAH [L. Nguyen et. al., 2017]

Some “gradient” methods to solve this problem



SARAH Algorithm

• It also does restarting as SVRG [Johnson & Zhang, 2013]
• It takes recursive gradient estimator

SARAH [Nguyen et. al., 2017]
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SARAH Algorithm

Inner loop

Outer  
loop

Full gradient computing

SARAH update (stochastic gradient computing)

• It also does restarting as SVRG [Johnson & Zhang, 2013]
• It takes recursive gradient estimator

!" = $%&' (" − $%&' (* + !*
SVRG

SARAH [Nguyen et. al., 2017]



SARAH One Outer Loop

• ! is "-smooth and #-strongly convex

Recall the update: $%&' = $% − *+%

• Each ,-, ∀0, is "-smooth and #-strongly convex

1 ||+%||3 ≤ 5% ⋅ 1 ||78 $9 ||3

5 = 1 − 2
*" − 1 #3*3 < 1, * < 2

"

1 ||+%||3 ≤ 5% ⋅ 1 ||78 $9 ||3

5 = 1 − 2#"*
# + " < 1, * ≤ 2

" + #
Hence,

1 ||>?||@ → B ⇒ 1 ||D?&E − D?||@ → B
SARAH is converging (somewhere) within a single outer loop with fixed “large” learning rate



SARAH Behavior
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Convergence Rates Comparisons

Strongly convex case: ! = #/% is a condition number

SGD: [Robbins & Monro, 1951], [Bottou et. al., 2018], [Nguyen et. al, 2018] 
SVRG: [Johnson & Zhang, 2013]
SAG/SAGA: [Schmidt et. al., 2017], [Defazio et. al., 2014]
SARAH: [Nguyen et. al., 2017]
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Inexact SARAH (iSARAH)



Inexact SARAH (iSARAH)

NOT computing Full gradient



Strongly Convex Results

Theorem 1: Suppose that !(#) is %-strongly convex and &(#; () is )-smooth and 
convex for every realization of (. Consider Algorithm 1 (iSARAH) with the choice 
of *, + , and , such that

- = 1
%*(+ + 1) +

*)
2 − *) +

44 − 2
,(2 − *)) < 1

(Note that 4 = )/%). Then, we have

7 ||9! :#; ||< − Δ ≤ -;(||9! :#? ||< − Δ)

where,

Δ = @
1 − - and @ = 4

,(2 − *))7 ||9& #∗; ( ||<
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Corollary 1: Let * = B
C

D
,+ = B 4 , , = B max

C

I
, 4 , J = B log

C

I
in

Theorem 1. Then, the total work complexity to achieve 7 ||9! :#; ||
<
≤ N is 

B max
C

I
, 4 + 4 log

C

I
.



Nonconvex Results

Theorem 2: Suppose that !(#; %) is '-smooth for every realization of %. Consider 
Algorithm 2 (iSARAH-IN) with

( ≤ 2
' 1 + 4. + 1 ≤ 1

'

Then, we have

/ ||12 3#4 ||5 ≤ 2
( . + 1 2 #6 − 2∗ + 1

. + 1/ ||1! #6; % ||5

9 = . + 1and
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Convergence Rates Comparisons

For smooth 
strongly convex 
functions

For smooth 
nonconvex 
functions



General Convex Results

Theorem 3: !(#; %) is '-smooth and convex for every realization of %. Consider 
Algorithm 1 (iSARAH) with the choice of (, ) , and * such that
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J
.

Assumption: Let ;#A, ;#G, … , ;#< be the outer iterations of Algorithm 1 (iSARAH). 
We assume that there exist . > 0 and C > 0 such that for all T = 0,1, … , K

: ;#U − : #∗ ≤ .||9: ;#U ||
= + C



Convergence Rates Comparisons

For smooth general convex functions
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