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Problem Statement

We consider the following finite-sum minimization:

min
w∈Rd

{
F (w) :=

1

n

n∑
i=1

f (w; i)
}
, (1)

where f (·; i) : Rd → R is a Lipschitz smooth function for i ∈ [n] :=
{1, . . . , n}, and F is convex. Assume that we have access to the first order
oracle of f (·; i). Below are some common sampling schemes:
Regular (Standard) Scheme: Uniformly at random: at each iteration it of
epoch t, sample an index uniformly at random from [n].
Shuffling Schemes:

Incremental Gradient: use a fixed permutation
{1, . . . , n} for all epochs.

Shuffle Once: random shuffle one permutation
and use it for all epochs.

Random Reshuffling: random shuffle a new
permutation at every epoch.

Nesterov Accelerated Shuffling Gradient

Algorithm 1: Nesterov Accelerated Shuffling Gradient (NASG) Method

1: Initialization: Choose an initial point x̃0, ỹ0 ∈ Rd.
2: for t = 1, 2, · · · , T do
3: Set y

(t)
0 := ỹt−1;

4: Generate any permutation π(t) of [n]
(either deterministic or random);

5: for i = 1, · · · , n do
6: Update y

(t)
i := y

(t)
i−1 − η

(t)
i ∇f (y

(t)
i−1; π

(t)(i));
7: end for
8: Set x̃t := y

(t)
n ;

9: Update ỹt := x̃t + γt(x̃t − x̃t−1);
10: end for

Comparison with deterministic NAG:

• Inner loop of deterministic NAG

1: for i = 1, · · · , n do
2: Update y

(t)
i := y

(t)
i−1 − η

(t)
i ∇f (y

(t)
0 ; π(t)(i)); ← fixed point

3: end for

• Inner loop of stochastic NASG

1: for i = 1, · · · , n do
2: Update y

(t)
i := y

(t)
i−1 − η

(t)
i ∇f (y

(t)
i−1; π

(t)(i)); ← moving continuously
3: end for

Our binary classification experiments for w8a and ijcnn1 datasets show our
motivation. NASG-PI is the stochastic version that applies Nesterov momentum
per iteration, while our method is per epoch.

Assumptions

Problem (1) satisfies:

(a) (Bounded below and convexity for F ) We assume the existence of a minimizer
for F , and F is convex.

(b) (L-smoothness) f (·; i) is L-smooth for all i ∈ [n]: , i.e., there exists L > 0:

∀w,w′ ∈ dom (F ) ∥∇f (w; i)−∇f (w′; i)∥ ≤ L∥w − w′∥. (2)

We let x∗ be any minimizer of F and consider the variance of F at x∗:

σ2
∗ :=

1

n

n∑
i=1

∥∇f (x∗; i)∥2 ∈ [0,+∞). (3)

In addition, we assume either (c1) or (c2):

(c1) (Individual convexity) f (·; i) is convex for all i ∈ [n].

(c2) (Generalized bounded variance) There exist two finite constants Θ, σ ≥ 0:

∀w ∈ dom (F ) :
1

n

n∑
i=1

∥∇f (w; i)−∇F (w)∥2 ≤ Θ∥∇F (w)∥2 + σ2. (4)

Main results

Theorem 1 - Unified Schemes (Informal)

We assume Assumption (a) and (b) with either (c1) or (c2) is satisfied. Let
∆ := ∥x̃0 − x∗∥2 with the initial point x̃0 and the minimizer x∗. With an
appropriate choice of the learning rate, F (x̃T )−F (x∗) is upper bounded by

either O
(
σ2
∗/L + L∆

T

)
, for individual convexity (c1)

or O

(
σ2/(ΘL) + LΘ1/3∆

T

)
, for generalized bounded variance (c2)

The convergence rate of NASG is better than the current state-of-the-art rate in
term of T for convex problems with general shuffling-type strategies [1, 3].

Theorem 2 - Randomized Schemes (Informal)

Suppose that Assumption (a), (b) and (c1) hold. Let ∆ := ∥x̃0− x∗∥2 with
the initial point x̃0 and the minimizer x∗. With an appropriate choice of the
learning rate and randomized shuffling schemes, we have

E[F (x̃T )− F (x∗)] ≤ O
(
σ2
∗/L

nT
+
L∆

T

)
This rate has a factor of n improved, and is better than the corresponding rate
for randomized schemes in the literature for convex problems [1, 3]. In the table
below, we show the complexity to reach an ϵ-accurate solution x that satisfies
F (x)− F (x∗) ≤ ϵ (or E[F (x)− F (x∗)] ≤ ϵ in random case).

Algorithms Complexity References

Standard SGD(1) O
(
∆2

0+G
2

ϵ2

)
(1) [2, 4]

SGD - Unified Schemes O
(
nL∆
ϵ + n

√
Lσ∗∆
ϵ3/2

)
[1, 3]

SGD - Randomized Schemes O
(
nL∆
ϵ +

√
nLσ∗∆
ϵ3/2

)
[1, 3]

NASG - Unified Schemes O
(
nL∆
ϵ + nσ2

∗
Lϵ

)
Theorem 1

NASG - Randomized Schemes O
(
nL∆
ϵ + σ2

∗
Lϵ

)
Theorem 2

(1) Standard results for SGD often use bounded domain that ∥x − x∗∥2 ≤ ∆0 for
each iterate x and/or bounded gradient that E[∥∇f (x; i)∥] ≤ G2.

Experiments

We test NASG method with SGD algorithm, SGD with momentum and
ADAM. Our tests have shown encouraging results for NASG.
(Convex Binary Classification). For the first experiment, we choose a binary
classification problem. Below, we show comparisons of loss residual F (x) −
F (x∗) (top) and test accuracy (bottom) produced by first-order methods for
w8a, ijcnn1 and covtype datasets, respectively.

(Convex and Non-convex Image Classification). We test four methods for
the second problem: training a neural network to classify images. Our figure
below compares the loss residual F (x)− F (x∗) (convex setting, top) and train
loss F (x) (non-convex setting, bottom) produced by first-order methods for
MNIST, Fashion-MNIST and CIFAR-10, respectively.
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