Nesterov Accelerated Shuffling Gradient Method for Convex Optimization

¹ Cornell University, School of Operations Research and Information Engineering ² IBM Research, Thomas J. Watson Research Center * Correspondence to Lam M. Nguyen, LamNguyen.MLTD@ibm.com.

Problem Statement

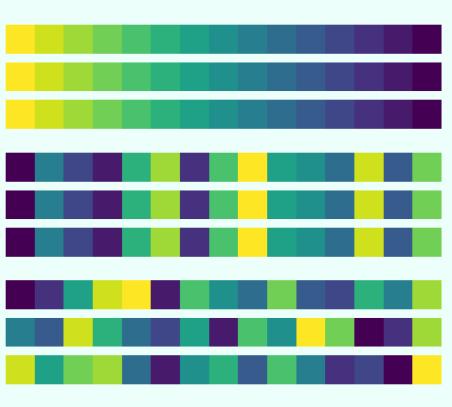
We consider the following **finite-sum minimization:**

$$\min_{w \in \mathbb{R}^d} \Big\{ F(w) := \frac{1}{n} \sum_{i=1}^n f(w;i) \Big\},$$

where $f(\cdot; i)$: $\mathbb{R}^d \to \mathbb{R}$ is a Lipschitz smooth function for $i \in [n]$:= $\{1, \ldots, n\}$, and F is **convex**. Assume that we have access to the first order oracle of $f(\cdot; i)$. Below are some common sampling schemes: **Regular (Standard) Scheme:** Uniformly at random: at each iteration i_t of epoch t, sample an index uniformly at random from [n]. **Shuffling Schemes:**

Incremental Gradient: use a fixed permutation $\{1, \ldots, n\}$ for all epochs.

Shuffle Once: random shuffle one permutation and use it for all epochs.



Random Reshuffling: random shuffle a new permutation at every epoch.

Nesterov Accelerated Shuffling Gradient

Algorithm 1: Nesterov Accelerated Shuffling Gradient (NASG) Method

- **Initialization:** Choose an initial point $\tilde{x}_0, \tilde{y}_0 \in \mathbb{R}^d$. 2: for $t = 1, 2, \cdots, T$ do
- 3: Set $y_0^{(t)} := \tilde{y}_{t-1};$
- 4: Generate any permutation $\pi^{(t)}$ of [n]
- (either deterministic or random);
- for $i = 1, \cdots, n$ do
- Update $y_i^{(t)} := y_{i-1}^{(t)} \eta_i^{(t)} \nabla f(y_{i-1}^{(t)}; \pi^{(t)}(i));$
- end for
- 8: Set $\tilde{x}_t := y_n^{(t)};$
- 9: Update $\tilde{y}_t := \tilde{x}_t + \gamma_t (\tilde{x}_t \tilde{x}_{t-1});$

10: **end for**

Comparison with deterministic NAG:

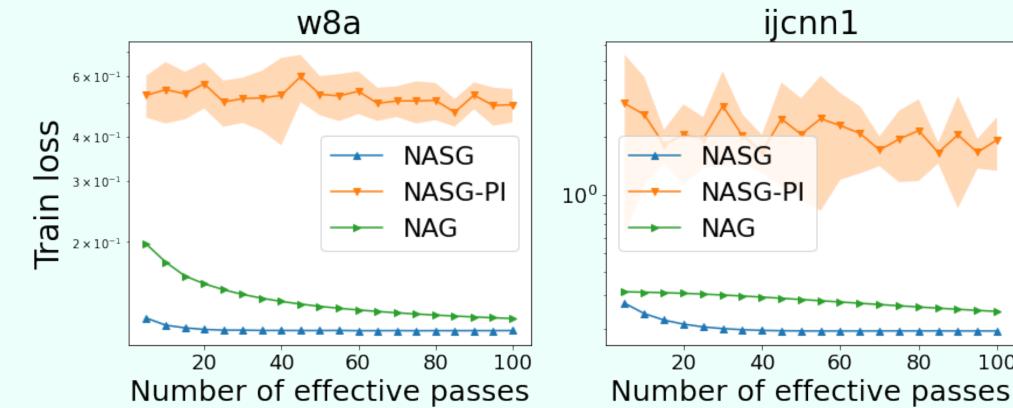
• Inner loop of deterministic NAG

- 1: for $i = 1, \dots, n$ do
- 2: Update $y_i^{(t)} := y_{i-1}^{(t)} \eta_i^{(t)} \nabla f(y_0^{(t)}; \pi^{(t)}(i)); \leftarrow \text{fixed point}$ 3: **end for**

• Inner loop of stochastic NASG

- 1: for $i = 1, \dots, n$ do
- 2: Update $y_i^{(t)} := y_{i-1}^{(t)} \eta_i^{(t)} \nabla f(y_{i-1}^{(t)}; \pi^{(t)}(i)); \leftarrow \text{moving continuously}$ 3: **end for**

Our binary classification experiments for w8a and ijcnn1 datasets show our motivation. NASG-PI is the stochastic version that applies Nesterov momentum per iteration, while our method is per epoch.



Trang H. Tran¹ · Katya Scheinberg ¹ · Lam M. Nguyen²

Assumptions

Problem (1) satisfies:

- (a) (Bounded below and convexity for F) We assume the existence of a minimizer for F, and F is convex.
- (b) (L-smoothness) $f(\cdot; i)$ is L-smooth for all $i \in$ $\forall w, w' \in \operatorname{dom}(F) \| \nabla f(w; i) - \nabla f(w; i) \| \nabla f(w; i) - \nabla f(w; i) \| \nabla f(w; i) - \nabla f(w; i) \| \nabla f(w;$

We let x_* be any minimizer of F and consider the variance of F at x_* :

$$\sigma_*^2 := \frac{1}{n} \sum_{i=1}^n \|\nabla f(x_*; i)\|^2 \in [0, +\infty).$$
(3)

In addition, we assume either (c1) or (c2):

(c1) (Individual convexity) $f(\cdot; i)$ is convex for all $i \in [n]$. (Concretized bounded variance) There exist two finite constants $\Theta \sigma > 0$.

i=1

$$\forall w \in \operatorname{dom}\left(F\right) : \frac{1}{n} \sum_{w}^{n} \|\nabla f(w;i) - \nabla F(w)\|^{2} \le \Theta \|\nabla F(w)\|^{2} + \sigma^{2}.$$
(4)

Main results

Theorem 1 - Unified Schemes (Informal)

We assume Assumption (a) and (b) with either (c1) or (c2) is satisfied. Let $\Delta := \|\tilde{x}_0 - x_*\|^2$ with the initial point \tilde{x}_0 and the minimizer x_* . With an appropriate choice of the learning rate, $F(\tilde{x}_T) - F(x_*)$ is upper bounded by

either
$$\mathcal{O}\left(\frac{\sigma_*^2/L + L\Delta}{T}\right)$$
, for individual
or $\mathcal{O}\left(\frac{\sigma^2/(\Theta L) + L\Theta^{1/3}\Delta}{T}\right)$, for genera

The convergence rate of NASG is better than the current state-of-the-art rate in term of T for convex problems with general shuffling-type strategies [1, 3].

Theorem 2 - Randomized Schemes (Informal)

Suppose that Assumption (a), (b) and (c1) hold. Let $\Delta := \|\tilde{x}_0 - x_*\|^2$ with the initial point \tilde{x}_0 and the minimizer x_* . With an appropriate choice of the learning rate and randomized shuffling schemes, we have

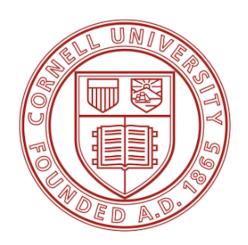
$$\mathbb{E}[F(\tilde{x}_T) - F(x_*)] \le \mathcal{O}\left(\frac{\sigma_*^2/L}{nT} + \frac{L\Delta}{T}\right)$$

This rate has a factor of n improved, and is better than the corresponding rate for randomized schemes in the literature for convex problems [1, 3]. In the table below, we show the complexity to reach an ϵ -accurate solution x that satisfies $F(x) - F(x_*) \le \epsilon$ (or $\mathbb{E}[F(x) - F(x_*)] \le \epsilon$ in random case).

Algorithms	Cor	mplexity	References
Standard SGD ⁽¹⁾	$\mathcal{O}\left(\right)$	$\left(\frac{\Delta_0^2 + G^2}{\epsilon^2}\right) (1)$	[2, 4]
SGD - Unified Schemes	$\mathcal{O}\left(\right)$	$\left(rac{nL\Delta}{\epsilon}+rac{n\sqrt{L}\sigma_*\Delta}{\epsilon^{3/2}} ight)$	[1, 3]
SGD - Randomized Schemes	$\mathcal{O}\left(\right)$	$\left(rac{nL\Delta}{\epsilon} + rac{\sqrt{nL}\sigma_*\Delta}{\epsilon^{3/2}} ight)$	[1, 3]
NASG - Unified Schemes	$\mathcal{O}\left(\right)$	$\left(\frac{nL\Delta}{\epsilon} + \frac{n\sigma_*^2}{L\epsilon}\right)$	Theorem 1
NASG - Randomized Schemes	$\mathcal{O}($	$\left(\frac{nL\Delta}{\epsilon} + \frac{\sigma_*^2}{L\epsilon}\right)$	Theorem 2

⁽¹⁾ Standard results for SGD often use bounded domain that $||x - x_*||^2 \leq \Delta_0$ for each iterate x and/or bounded gradient that $\mathbb{E}[\|\nabla f(x;i)\|] \leq G^2$.

(1)



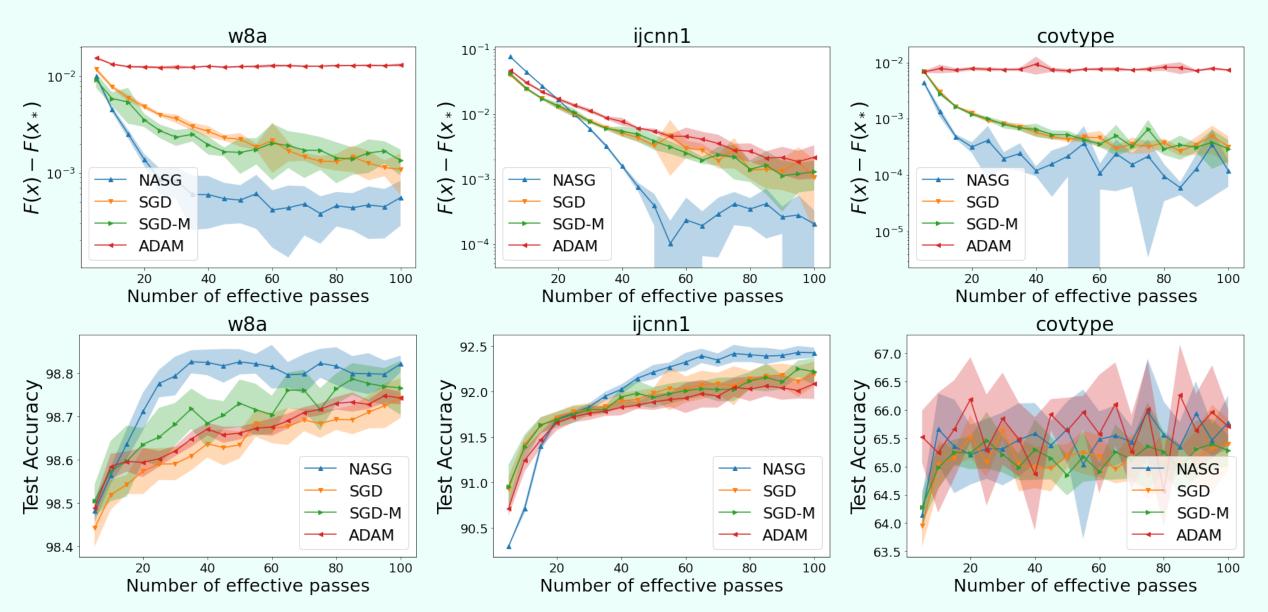
$$\in [n]: , \text{ i.e., there exists } L > 0:$$

$$f(w';i) \parallel \leq L \parallel w - w' \parallel.$$
(2)

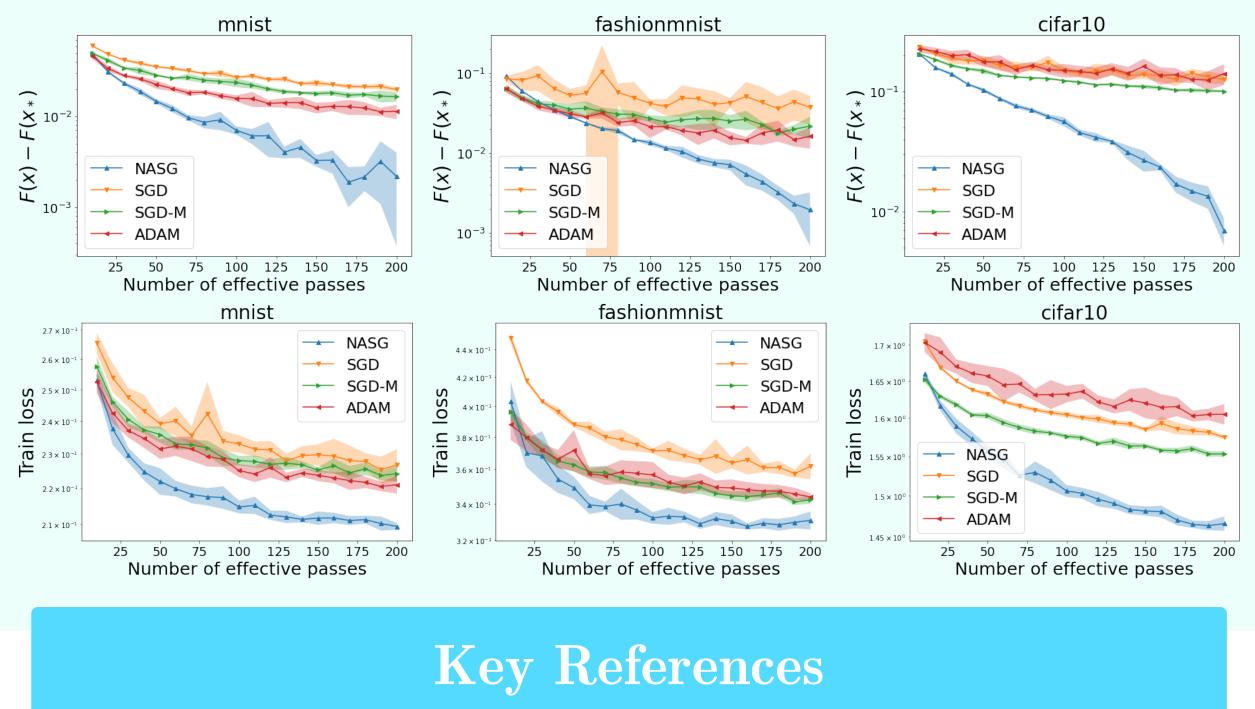
convexity (c1)

calized bounded variance (c2)

We test NASG method with SGD algorithm, SGD with momentum and **ADAM**. Our tests have shown encouraging results for NASG. (Convex Binary Classification). For the first experiment, we choose a binary classification problem. Below, we show comparisons of loss residual F(x) – $F(x_*)$ (top) and test accuracy (bottom) produced by first-order methods for w8a, ijcnn1 and covtype datasets, respectively.

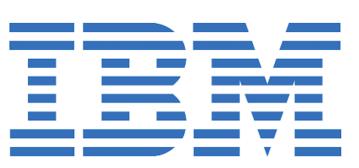


(Convex and Non-convex Image Classification). We test four methods for the second problem: training a neural network to classify images. Our figure below compares the loss residual $F(x) - F(x_*)$ (convex setting, top) and train loss F(x) (non-convex setting, bottom) produced by first-order methods for MNIST, Fashion-MNIST and CIFAR-10, respectively.



[1] Mishchenko, K., Khaled Ragab Bayoumi, A., and Richtárik P. Random reshuffling: Simple analysis with vast improvements. Advances in Neural Information Processing Systems, 33, 2020. [2] Nemirovski, A., Juditsky, A., Lan, G., and Shapiro, A. Robust stochastic approximation approach to stochastic programming. SIAM J. on Optimization, 19(4):1574-1609, 2009.[3] Nguyen, L. M., Tran-Dinh, Q., Phan, D. T., Nguyen, P. H., and van Dijk, M. A unified convergence analysis for shuffling-type gradient methods. *Journal* of Machine Learning Research, 22(207):1-44. [4] Shamir, O. and Zhang, T. Stochastic gradient descent for non-smooth optimization: Convergence results and optimal averaging schemes. Proceedings of the 30th International Conference on Machine Learning, PMLR. [5] Tran, T. H., Nguyen, L. M., and Tran-Dinh, Q. SMG: A shuffling gradientbased method with momentum. Proceedings of the 38th International Conference on Machine Learning, PMLR.

ICML | 2022



Experiments