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We consider the following finite-sum minimization:

1 n
min { F(w) = - Z flwsi)}, (1)
where f(-;¢) : RY — R is a Lipschitz smooth function for i € [n] :=
{1,...,n}, and F is convex. Assume that we have access to the first order
oracle of f(-;7). Below are some common sampling schemes:

Regular (Standard) Scheme: Uniformly at random: at each iteration #; of
epoch t, sample an index uniformly at random from |n].

Shuffling Schemes:

Incremental Gradient: use a fixed permutation
{1,...,n} for all epochs.

Shuffle Once: random shuffle one permutation
and use it for all epochs.

Random Reshuffling: random shuffle a new
permutation at every epoch.

Algorithm 1: Nesterov Accelerated Shuffling Gradient (NASG) Method
.. Initialization: Choose an initial point %, 7, € R
o fort=1,2,--- T do
3 et yétI = UYi_1;
+  Generate any permutation 7% of [n]
(either deterministic or random);
5 fori=1,--- ., ndo
t t t t .
o Update ;' =y, — 'V f (5w 0(0));
~ end for
s oet Ty = ygI;
o Update y; == 2y + %(fit — ft—l);
1. end for

Comparison with deterministic NAG:

e Inner loop of deterministic NAG

. fori=1,--- ,ndo
> Update yZItI = yZII_Il = UZIIIV f (yétI; 7 (4)); < fixed point
5. end for
e Inner loop of stochastic NASG
. for:=1,--- ,ndo
> Update yZItI = yft_Il — nZIIIV f (yZIt_Il; 7 9(4)); < moving continuously
5. end for

Our binary classification experiments for w8a and ijcnnl datasets show our
motivation. NASG-PI is the stochastic version that applies Nesterov momentum
per iteration, while our method is per epoch.
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Problem (1) satisfies:

(a) (Bounded below and convexity for F') We assume the existence of a minimizer
for F', and F' is convex.

(b) (L-smoothness) f(+;4) is L-smooth for all ¢ € [n|: | i.e., there exists L > 0:
Vw, w' € dom (F) [V f(w;i) — Vf(w'4)|| < Lfjw —w'|. (2)

We let x, be any minimizer of F' and consider the variance of F' at x,:
1 — |
ot == 3" IV ()l € 0, +o0) 3)
=1

[n addition, we assume either (c1) or (c2):
(c1) (Individual convexity) f(+;4) is convex for all i € |n].

(c2) (Generalized bounded variance) There exist two finite constants ©, 0 > 0:

vao € dom (F) %Z IV f(w: i) — VEwW)|2 < O|VE@)|P + 02 (4)

We assume Assumption (a) and (b) with either (c1) or (c2) is satisfied. Let
A = ||Ty — z||* with the initial point Z; and the minimizer z,. With an
appropriate choice of the learning rate, F'(zy) — F(x,) is upper bounded by
o2/L + LA
T
o (02/(@L) + LOY3A

either O ( ) ,for individual convexity (cl)

A ) , for generalized bounded variance (c2)

The convergence rate of NASG is better than the current state-of-the-art rate in
term of T" for convex problems with general shuffling-type strategies |1, 3|.

Suppose that Assumption (a), (b) and (c1) hold. Let A = ||y — x.]|* with
the initial point xy and the minimizer x,. With an appropriate choice of the
learning rate and randomized shuffling schemes, we have

B (ar) - Fla) < 0 (20 + 22)

This rate has a factor of n improved, and is better than the corresponding rate
for randomized schemes in the literature for convex problems |1, 3]. In the table

below, we show the complexity to reach an e-accurate solution z that satisfies
F(x) — F(x,) <€ (or E[F(z) — F(x,)] < € in random case).

Algorithms Complexity References
Standard SGD O (A?);Gz) (1) 2 4
SGD - Unified Schemes O ("’];A | ”@g*ﬁ) 1, 3
SGD - Randomized Schemes O (”LeA | @g*ﬁ) 1, 3
NASG - Unified Schemes O (”[;A 2 nLJ:) Theorem 1
NASG - Randomized Schemes| O (”];A . Zi) Theorem 2

1) Standard results for SGD often use bounded domain that ||z — z,]|> < A for
cach iterate z and/or bounded gradient that E[||V f(z:4)]|] < G*.

<|||!

We test NASG method with SGD algorithm, SGD with momentum and
ADAM. Our tests have shown encouraging results for NASG.

(Convex Binary Classification). For the first experiment, we choose a binary
classification problem. Below, we show comparisons of loss residual F(x) —
F(x,) (top) and test accuracy (bottom) produced by first-order methods for
w3a, 1jcnnl and covtype datasets, respectively.
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(Convex and Non-convex Image Classification). We test four methods for
the second problem: training a neural network to classity images. Our figure
below compares the loss residual F(x) — F'(x,) (convex setting, top) and train

loss F(x) (non-convex setting, bottom) produced by first-order methods for
MNIST, Fashion-MNIST and CIFAR-10, respectively.
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