
Regression Optimization for System-level Production Control

Dzung T. Phan1, Lam M. Nguyen1, Pavankumar Murali1,
Nhan H. Pham2, Hongsheng Liu2, Jayant R. Kalagnanam1

1IBM Research, Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA
2The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA

phandu@us.ibm.com, LamNguyen.MLTD@ibm.com, pavanm@us.ibm.com,
nhanph@live.unc.edu, hsliuustc@gmail.com, jayant@us.ibm.com

Abstract— We propose a novel generalized prediction-
optimization framework to optimize set point controls for a
network of processes in a production plant, wherein a regression
model is used to capture the physical representation of each
process’s behavior and the relationship between its inputs and
outputs. We introduce a nonlinear optimization problem to
model the optimal set-point problem. For piece-wise linear
regressors, we reformulate the problem into a mixed-integer
linear program. For highly nonlinear models such as deep
neural networks, we propose a decomposition primal-dual
algorithm for solving it. Using a real-world use case of oil sands
processing, we show the benefit of our approach by the ability
to efficiently identify a set of feasible control variables, while
giving a high production output.

I. INTRODUCTION

Process industries such as those related to crude oil
production and refining, steel or aluminum manufacturing,
cement manufacturing etc. frequently consist of many com-
plex processes. Within each process, a byproduct from an
upstream process undergoes a chemical and/or a physical
transformation and is transported to a downstream process.
Set points that control the performance of each process,
measured in terms of throughput or quality, may themselves
be dependent on the performance of an upstream process, as
well as external factors such as ambient temperature, mineral
content in the raw material etc. To maintain consistency in
the overall performance, plant managers monitor and control
set points. Processing plants instrumented with senors that
capture fine grained process-related data, coupled with novel
AI techniques could help aid this need.

A fundamental premise that has driven the infusion of
AI technologies into process planning and management for
heavy industries is the need for a Cognitive Advisor that can
be built for each enterprise function. For example, a Cogni-
tive Plant Advisor that is designed to consume historical and
real-time data may be able to predict process performance
and support a plant operator to (i) control process behavior
over a time horizon by manipulating set points (advisory
control) in order to navigate through normal operations with
scheduled maintenance, and (ii) chart out a recovery plan
in terms of set points to use to minimize disruption due to
an unforeseen breakdown. This necessitates the development
of a high fidelity regression model built using the available
sensor data, and an optimization model, that operates in the
neighborhood of set points with sufficient support, to opti-

mize the desired business objective. Since the optimization
uses a data-driven regression model as a representation of
each plant, its run-time complexity, scalability and solution
quality guarantees could depend on the nature of the model,
e.g. whether we use a piece-wise linear model, nonlinear and
non-convex deep neural network or a black-box ensemble
model. This paper presents a novel prediction-optimization
framework combining machine learning and optimization
techniques for recommending optimal set points in a complex
production plant.

The system-wide set point optimization spanning multiple
plants and processes has received attention in the literature
[1], [2], [3]. However, a common feature in prior art is the
use of nonlinear physical first-principles models reflecting
physical laws such as energy balance, heat transfer relations
and mass balance for each process, coupled via material flow
balance equations. Existing work has previously combined
physical models and data-driven models [4]. A machine
learning-based approach has been proposed in [5], but it lacks
generality for applying in various manufacturing plants and
prediction model selection.

The end-to-end learning methods in [6], [7], [8] are de-
voted to a single process, and they can handle specific classes
of problems due to a need for solving a two-stage stochastic
programming problem. In our case, since the sensor data for
processes come from different temporal resolutions, these
frameworks are unsuitable to build a similar end-to-end so-
lution for our system-wide problem. There are existing works
using surrogate statistical models for complex processes [9],
but mainly as an experimental design to estimate a response
surface model [10] or optimize a flowsheet structure [11],
[12] or set points for a single process [13], [14]. In our
setting, we rely only on historical plant sensor data, and do
not have access to a plant simulator.

II. SYSTEM-LEVEL PREDICTION OPTIMIZATION

To fully understand the need for prediction-optimization
models in real applications, we consider a real-world case
study from the oil sands processing plant, whose graphical
representation is given in Figure 1.

In this context, optimization involves devising set point
trajectories over a time horizon that maximize Synthetic
Crude Oil (SCO) production. Starting with mined ore, the
first step is to extract bitumen as froth and store it in a

Fig. 1: An oil sands production plant

storage tank. Processes P1 and P2 are two parallel froth
and diluted bitumen production plants. Three storage tanks
T1, T2, and T3 store diluted bitumen. Diluted bitumen
is then passed through another stage of extraction, P3, to
produce low-quality SCO that gets stored in tank T4. This is
further processed in processes P4 and P5. They are parallel
upgraders that produce different grades of synthetic crude oil.
We are given historical data covering a span of three years
containing sensors measurements and production outputs
for every processes. Under such scenarios, an optimization
model could provide a set of recommendations on control
set-points for the plant operator, such as mine tonnage rates
and upgrading feed rates, that optimize the SCO production.

Our system-wide prediction optimization problem for a
production plant is devoted to maximizing the flow through-
put of end products by seeking an optimal production sched-
ule with operational constraints, e.g., maintaining the levels
of intermediate products in storage inventories and economic
targets. The use of machine learning to model complex
process from data is in large part motivated by a desire
to improve operations measure in terms of productivity,
throughput, efficiency and/or resource utilization. In such a
setting the pipelines for analysis need to include a machine
learning step to build prediction models for every output
followed by an optimization procedure to derive the optimal
set points for the process.

A plant can be modeled using multiple lower-level process
nodes that connect to make up the plant. In this section, we
propose a mathematical model to capture the interactions
between processes (e.g., processes P1, . . . , P5 in Figure 1)
and auxiliary sub-systems (e.g, tank inventories T1, . . . , T4)
when they operate at a stationary point. We model process
flows for the system of processes as a directed multi-layer
network of sub-systems as in Figure 2.

Fig. 2: Network representation for a system of plants

We view the plant as a hierarchy structure with L layers
having upstream-downstream operation relations. A circular

node in a layer of the network represents a process, where
a regression function is built. A rectangular node represents
all operational constraints such as mass balance equations,
maintaining inventory levels, and limits on the adjustment of
variables from the preceding time period. The relationships
in these rectangular nodes are assumed to be linear.

We assume that each vector-valued regression function

fl : (zl−1,xl) ∈ Rkl−1+ml → yl ∈ Rnl

for processes positioned at the l-th layer has been learned
from historical data. The trained model is available to pro-
duce a liable prediction output. Here we denote xl ∈ Rml

and zl−1 ∈ Rkl−1 by the controllable variables (e.g., set
points) and uncontrollable variables (e.g., the inflow from the
previous process) for fl. The vector yl ∈ Rnl is the outflow.
We assume k0 = 0; that is, the decision variables for the first
layer are only set points. Let φ be the objective function for
the system of processes. The main goal is to find optimal set
points xl and flow rates (yl,zl) to maximize production or
some target variable. We express the optimal control model
as the following constrained optimization problem

min
X

φ(yL)

s.t. y1 = f1(x1),

yl = fl(zl−1,xl), ∀l = 2, . . . , L,

Alyl + Blzl ≤ bl, ∀l = 1, . . . , L− 1,

xl ≤ xl ≤ xl, ∀l = 1, . . . , L,

y
l
≤ yl ≤ yl, ∀l = 1, . . . , L,

zl ≤ zl ≤ zl, ∀l = 1, . . . , L− 1,

(1)

where X = (x1, . . . ,xL,y1, . . . ,yL, z1, . . . , zL−1) and the
objective function φ(yL) depends on the output at the last
layer. Define xl and xl as upper and lower bounds on control
set-points, zl and zl are limits for infows of processes. The
operational limits for processes are y

l
and yl.

The linear constraint Alyl + Blzl ≤ bl captures mass
balance and material flow rate equations between the l-th
process layer, represented by the rectangular nodes gi. An
example for operational constraints in the linear constraint is
the storage limit for T4 (i.e., l = 2) in Figure 1:

y2 − z1
2 − z2

2 − s2 = 0,

where s2 is the tank level for T4; s2 and s2 are storage limits.

III. MIXED-INTEGER FORMULATION FOR PIECEWISE
LINEAR REGRESSORS

The relationship between inputs and an output for an in-
dustrial plant is often complex, a non-linear prediction model
should be used to capture the complexity rather than a linear
model. It gives rise to a nonlinear regression fl; consequently
the problem (1) is a nonconvex program. Most nonlinear
optimization algorithms devoted to a nonconvex program
such as augmented Lagrangian method and interior-point
methods do not guarantee to generate a global minimizer,
they can get stuck at a local minimizer. In some industries
such as oil and gas, a small improvement to solution quality

can have significant economic impact; for example it can be
measured in billions of dollars per year for a 5% increase
in control efficiency in the area. By using a mixed-integer
linear program (MILP), we can obtain a globally optimal
solution to the nonconvex (possibly nonsmooth) problem in a
reasonable running time with the help of exact methods such
as branch-and-bound and branch-and-cut for some classes
of regression functions. We make use of recent advances in
terms of computational strength and flexibility of state-of-
the-art MILP solvers (e.g. CPLEX [15]), which leads to an
optimally-tractable MILP formulation.

In this section, we show that for certain partition regres-
sions based on piece-wise linear approach such as decision
trees, multivariate adaptive regression splines (MARS), and
decision lists [16], we can formulate Problem (1) as a mixed-
integer linear program. The main idea is to use a mixed-
integer linear representation for each regression function fl.
In the following, we present a MILP model for two popular
models: oblique decision trees and MARS, but we can extend
the technique for other piece-wise linear regressions.

Decision trees: An oblique decision tree regression y =
h(x) is characterized by sets of leaf nodes and branching
nodes. Denote L by the set of leaf nodes, and B by the
set of branching nodes. For each leaf node ` ∈ L, a linear
regression r`(x) = wT

` x + c` has been learned from the
training data based on the points routed to the leaf node.
A branching node ` ∈ B is represented by a hyperplane
aT` x + b`, where if aT` x + b` < 0 then the point x will
follow the left branch from the node, otherwise it splits into
the right branch. Since the topology of the tree is fixed, for
each feature vector x, there is a unique path leading to a
leaf node ` ∈ L from the root of the tree. Let NL(`) denote
the ancestor nodes of ` where the left branch is followed on
the path from the root to `, and let NR(`) denote the set
of right branch ancestors on the path. The binary variable
e` ∈ {0, 1}, ` ∈ L, indicates if x is assigned to leaf node `
then e` = 1.

Assigning a data point x to a leaf node is modeled as∑
`∈L

e` = 1. (2)

To determine the unique path routing to a leaf node, with the
help of the indicator variable e`, the following constraints are
enforced for modeling the splitting at branching nodes

aTkx + bk < M(1− e`), ∀` ∈ L, k ∈ NL(`)

aTkx + bk ≥ −M(1− e`), ∀` ∈ L, k ∈ NR(`),
(3)

where M is the big-M parameter. The decision tree regres-
sion y = h(x) can be represented as a mixed-integer bi-linear
model

y =
∑
`∈L e`(w

T
` x + c`)

s.t. Eqs. (2), (3)
e` ∈ {0, 1}, ∀` ∈ L.

(4)

We now linearize the bilinear term e`(w
T
` x+c`). Assume

yL` ≤ wT
` x + c` ≤ yU` for some constants yL` and yU` . This

assumption is reasonable because x is usually bounded; for

example, the training data are normalized to the 0−1 range,
and w`, c` are fixed model parameters. Then we have that
y` = e`(w

T
` x + c`) is equivalent to

yL` e` ≤ y` ≤ yU` e`
wT
` x + c` − yU` (1− e`) ≤ y` ≤ wT

` x + c` − yL` (1− e`).
(5)

Hence a mixed-integer linear representation for the decision
tree regression y = h(x) is

h(x) =
∑
`∈L y`

s.t. Eqs. (2), (3), (5)
e` ∈ {0, 1}, ∀` ∈ L.

(6)

Multivariate adaptive regression splines: We con-
sider the regression spine fitting of degree 1: h(x) =
α0 +

∑N
i=1 αihi(x), where αi are scalars and hi(x) =

max{wT
i x + ci, 0}. A linear representation is

h(x) = α0 +
∑N
i=1 αiyi

s.t. yi ≥ wT
i x + ci, i = 1, . . . , N

yi ≤ (wT
i x + ci) +M1ei, i = 1, . . . , N

yi ≤M2(1− ei), i = 1, . . . , N

ei ∈ {0, 1}, yi ≥ 0, i = 1, . . . , N,

(7)

where M1 and M2 are large numbers.
Obviously, when the linear-based representations (6) and

(7) are plugged into the problem (1), we get a MILP
formulation provided that φ is linear, which can be efficiently
solved to optimality by a MILP solver.

IV. NONLINEAR OPTIMIZATION ALGORITHM

In this section, we present a decomposition optimization
algorithm for solving the problem (1) when the regression
functions are highly nonlinear and cannot be linearized as
in Section III. We assume that the gradient of fl is readily
available, but expensive to compute such as deep neural
networks. We propose a two-level augmented Lagrangian
algorithm for (1). We decompose the problem and solve a
sequence of subproblems at process-level.

A. Two-level Augmented Lagrangian Method

We propose to solve (1) by the two-level augmented
Lagrangian method when gradients of fl are available. We
treat nonlinear local constraints y` = f`(·) and the linear
coupling constraints Alyl + Blzl ≤ bl differently. The
nonlinear ones are taken care by the augmented Lagrangian
method (ALM) in the outer loop, while the linear ones are
handled by ADMM in the inner level.

In order to apply a multi-block ADMM [17], we refor-
mulate the inequality constraint into an equality constraint
Alyl+Blzl+vl−bl = 0,vl ≥ 0. However, as explained in
Section 2.3 of [17], a multi-block ADMM has some intrinsic
limitations, which prevents its application to a nonconvex
problem. A crucial condition for convergence guarantee
related to the images of coupling matrices is not satisfied
in many settings, including our formulation (see Condition

1 in [17]). To overcome this issue, we add a slack variable
ul for the linear constraint

Alyl + Blzl + vl− bl + ul = 0,

ul = 0.

Now, we deal with both constraints y` = f`(zl−1,xl)
and ul = 0 by the augmented Lagrangian method, and
Alyl + Blzl + vl − bl + ul = 0 by a multi-block ADMM.
Specifically, we consider the following subproblem in ALM:

min F (û, v̂, x̂, ŷ, ẑ, λ̂k, ν̂k;βk, γk) =

φ(yL) + (λk
1)

T (y1 − f1(x1)) +
βk

2
‖y1 − f1(x1)‖2

+

L∑
l=2

(λk
l)

T (yl − fl(zl−1,xl)) +
βk

2

L∑
l=2

‖yl − fl(zl−1,xl))‖2

+

L−1∑
l=1

(νkl)
Tul +

γk

2

L−1∑
l=1

‖ul‖2

s.t. Alyl +Blzl + vl − bl + ul = 0, ∀ l = 1, . . . , L− 1,

xl ≤ xl ≤ xl, y
l
≤ yl ≤ yl, ∀ l = 1, . . . , L,

zl ≤ zl ≤ zl, vl ≥ 0, ∀ l = 1, . . . , L− 1.
(8)

The two-level augmented Lagrangian method is given in
Algorithm 1, where h(x̂, ŷ, ẑ) = [y1 − f1(y1),y2 −
f2(z1,y2), · · · ,yL − fL(zL−1,yL)].

Algorithm 1 : Two-level ALM

1: Initialize starting points (û0, v̂0, x̂0, ŷ0, ẑ0); β1, γ1 > 0, ω ∈
[0, 1), τ > 1; index k ← 1;

2: while some stopping criterion is not satisfied do
3: /* Inner level problem */
4: Solve (8) by a multi-block ADMM to get

(ûk, v̂k, x̂k, ŷk, ẑk, µk) for (λ̂k, βk) and (ν̂k, γk);
5: if ‖h(x̂k, ŷk, ẑk)‖ ≤ ω‖h(x̂k−1, ŷk−1, ẑk−1)‖ then
6: λ̂k+1 ← λ̂k + βkh(x̂k, ŷk, ẑk), βk+1 ← βk;
7: else
8: λ̂k+1 ← λ̂k, βk+1 ← τβk;
9: end if

10: if ‖ûk‖ ≤ ω‖ûk−1‖ then
11: ν̂k+1 ← ν̂k + γkûk, γk+1 ← γk;
12: else
13: ν̂k+1 ← ν̂k, γk+1 ← τγk;
14: end if
15: k ← k + 1;
16: end while

B. Convergence Analysis

Next, we show a theoretical convergence result for the
two-level ALM algorithm when combining with a multi-
block ADMM for solving subproblems. To achieve the goal,
we make use of the following assumptions.

Assumption 1: F (û, v̂, x̂, ŷ, ẑ, λ̂k, ν̂k;βk, γk) is continu-
ously differentiable.

Assumption 2: The inner level ADMM outputs an approx-
imate solution {(ûk, v̂k, x̂k, ŷk, ẑk, µk)} to the following

conditions

dk1 ∈ ∇f(x̂k, ŷk, ẑk) +NX (x̂k, ŷk, ẑk) + CTµk+

+∇h(x̂k, ŷk, ẑk)T (λ̂k + βkh(x̂k, ŷk, ẑk))

dk2 ∈ µk +NX̄ (v̂k),

dk3 = Aŷk + Bẑk + v̂k − b + ûk,

ν̂k + γkûk + µk = 0,

where limk→∞ ‖dki ‖ = 0 for i = 1, 2, 3, f(x̂, ŷ, ẑ) = φ(yL),
C =

[
0 A B

]
is the matrix associate with (x̂, ŷ, ẑ) in the

linear constraint. χ and χ̄ are the box constraints for (x̂, ŷ, ẑ)
and v̂ respectively.

We notice that for the last block of inner level ADMM,
the linear constraint related to û is an identity matrix and
the objective function is a convex and quadratic function.
Under mild conditions on the functions f , h and the matrices
A, B, the multi-block ADMM algorithm can converge
(subsequently) to a stationary point of the subproblem (8)
and therefore Assumption 2 can be satisfied. The readers
can refer to [18] for details.

Theorem 1: Suppose that Assumptions 1-2 hold. Let
(û∗, v̂∗, x̂∗, ŷ∗, ẑ∗) be a limit point of outer-level iterates
{(ûk, v̂k, x̂k, ŷk, ẑk)} generated by Algorithm 1. Assume
that the sequences {λ̂k} and {ν̂k} are bounded. If {(λ̂k, µk)}
has a limit point (λ̂∗, µ∗) along the subsequence converging
to (û∗, v̂∗, x̂∗, ŷ∗, ẑ∗). Then (v̂∗, x̂∗, ŷ∗, ẑ∗, λ̂∗, µ∗) is a sta-
tionary point.

Proof: By adding nonnegative slack variables
(v1, . . . ,vL−1) in problem (1), the model can be transformed
equivalently as

min φ(yL)

s.t. y1 = f1(x1),

yl = fl(zl−1,xl), ∀l = 2, . . . , L,

Alyl + Blzl + vl − bl = 0, ∀l = 1, . . . , L− 1,

xl ≤ xl ≤ xl, ∀l = 1, . . . , L,

zl ≤ zl ≤ zl,vl ≥ 0, ∀l = 1, . . . , L− 1.
(10)

We note that (v̂∗, x̂∗, ŷ∗, ẑ∗, λ̂∗, µ̂∗) is a stationary point of
problem (10) if it satisfies the following condition

0 ∈ ∇f(x̂∗, ŷ∗, ẑ∗) +∇h(x̂∗, ŷ∗, ẑ∗)T λ̂∗+

NX (x̂∗, ŷ∗, ẑ∗) + CTµ∗

0 ∈ µ∗ +NX̄ (v̂∗)

Aŷ∗ + Bẑ∗ + v̂∗ − b = 0,

h(x̂∗, ŷ∗, ẑ∗) = 0.

(11)

Under Assumption 2, we only need to show û∗ = 0 and
h(x̂∗, ŷ∗, ẑ∗) = 0 to complete primal feasibility.

For the first part, if γk is bounded, then we have ûk → 0
so û∗ = 0. If βk is unbounded, by taking limits on both
sides of

ν̂k

γk
+ ûk +

µk

γk
= 0, (12)

we also have û∗ = 0, because ν̂k is bounded and µk

converges to µ∗.
For the second part, if βk is bounded, then we have

h(x̂k, ŷk, ẑk) → 0 so h(x̂∗, ŷ∗, ẑ∗) = 0. By contra-
diction argument, if βk is unbounded and suppose that
limk→∞ ‖h(x̂k, ŷk, ẑk)‖ = ‖h(x̂∗, ŷ∗, ẑ∗)‖ > 0. For any
feasible solution (x̂, ŷ, ẑ) to problem (1), it follows that

Lρ(ûk, v̂k, x̂k, ŷk, ẑt;µk)

= f(x̂k, ŷk, ẑk) + λ̂Th(x̂k, ŷk, ẑk)

+
β

2
‖h(x̂k, ŷk, ẑk)‖2 + (ν̂k)T ûk +

γ

2
‖ûk‖2

+

L−1∑
l=1

(µkl)T (Aly
k
l + Blz

k
l + vkl − bl + ukl)

+
ρk

2

L−1∑
l=1

‖Aly
k
l + Blz

k
l + vkl − bl + ukl ‖2

≤ f(x̂, ŷ, ẑ).

Notice that λ̂k and ν̂k are bounded and limk→∞ ûk = 0,
limk→∞ f(x̂k, ŷk, ẑk) ≥ f∗ := min(x̂,ŷ,ẑ)∈X f(x̂, ŷ, ẑ).
Taking k →∞, the above inequality will fail to hold. As a
result, h(x̂∗, ŷ∗, ẑ∗) = 0, which finishes the proof.

V. CASE STUDY: OIL SANDS PRODUCTION

We present a case study for a real system from a major
Canadian oil-sands company. We use the proposed system-
wide prediction-optimization framework to improve crude
oil production under various asset capacity constraints. The
details and the graphical representation have been described
in Sect. 2. The objective of the production optimization is
to maximize SCO production and maintain the levels of
intermediate products in storage tanks under both normal
operations and planned maintenance.

Data set. The dataset were collected from over 100, 000
sensors or tags that record measurements taken every five
minutes and covering a historical span of three years. There
are two types of tags: raw and calculated. Raw tags capture
physical measurements such as flow rate, density, tempera-
ture, pressure, and vibration at various points in the plant.
Calculated tags, such as laboratory results on product quality
and chemical composition, are available every twelve hours.
The dataset is ordered by time and then split into train,
test and validation sets. Each split is time-wise contiguous,
i.e. it contains data for set of consecutive time stamps.
Based on expert input and feature extraction and engineering,
covariates to be used for each regression model are identified.

Modeling. Regression models are used to represent the
relationship between inflows and outflows for each of process
Pi. We used the IBM AutoAI toolkit for automated machine
learning to search for the right learning algorithm and
optimize its hyperparameters [19]. We restrict out machine
learning models to: MARS, decision tree, random forests,
and fully connected deep neural networks.

A. Optimization Algorithm Performance

First, we compare solution quality and running time
between our optimization algorithms (MILP-based models
(6), (7), two-level ALM over the popular baseline methods
(sequential least squares programming algorithm-SLSQP and
conventional ALM [20]) for solving the problem (1) with
different regression function scenarios.

Mixed-Integer Linear Programming: Table I compares
MILP for MARS and the decision tree regression (TreeReg)
models with the conventional ALM for solving (1). We run
both algorithms with 200 different initializations, count the
number of runs that achieve a global solution and compute
the average running time. We use IBM CPLEX 12.9 to solve
MILP problems. For solved cases, MILP always found the
globally optimal solution with speed about 50x faster than
ALM. Because of discontinuity for the regression tree model,
ALM often got stuck at an infeasible point for TreeReg. To
show solution quality for the MARS model, Figure 3 plots
the percentage difference (from the global optimal value)

p =
|v − vopt|

max{1, |vopt|}
×100%, where vopt is the global optimal

value, and v is the objective function value obtained from
ALM or MILP. We can see that ALM converges to local
minimums instead of the global minimum in 26 out of 200
cases with more than 3% away from the optimal value.
The MILP formulation shows significant advantages in both
solution qualities and computational time when dealing with
piece-wise linear regressors.

Optimality found (%) Average time (s)
MARS-MILP 100% 0.14
MARS-ALM 87% 6.58

TreeReg-MILP 100% 0.12
TreeReg-ALM 65% 7.42

TABLE I: Comparison between MILP and ALM

Fig. 3: Comparison between MILP and ALM

Nonlinear Models: Here, we use the two-level ALM in
Sect. IV to solve (1) when the regression functions fl are
pre-trained feed forward neural networks. Figure 4 shows
the comparison among SLSQP, two-level ALM, and conven-
tional ALM. We randomly generate 200 initialization points
and run all algorithms until convergence. Clearly, we can
see that SLSQP performs poorly, while two-level ALM and
ALM achieve essentially the same optimal value. The two-
level ALM converged faster than ALM; that is, 8.6(s) versus
9.1(s) on average.

Fig. 4: Comparison among SLSQP, two-level ALM and ALM

B. Application to the Real System

Our solution has been deployed at the oil-sands company
since January 2019. It alerts the plant operator on impending
process failures and lost opportunities (defined as deviations
from historical performance and/or production plan) and
recommends optimal set points. In this context, optimiza-
tion involves devising production strategies that maximize
synthetic crude oil production, under both normal operations
as well as unplanned upsets and breakdowns. In the event
of process upsets or breakdowns within any plant to ensure
uninterrupted supply of diluted bitumen to upgrading and/or
to the market, inventories of froth and diluted bitumen are
maintained in intermediate storage tanks.

We picked the best performance model for each plant
based on cross-validation. The decision tree regression is
most suited for plants P1, P2, and P3, while MARS performs
best for P4 and P5. The relative percentage errors on the test
data are within the range of 4-8%. Figure 5 shows the detail
view of the set points and KPI for a scenario, as computed
by the optimization model.

Fig. 5: Production Detail View

We compared our control recommendations to what a hu-
man expert did over one month under similar conditions such
as operational constraints, planned maintenance schedules,
and raw material inflows. We have observed that with the
help of our proposed process optimization, there is about
1.9% improvement on the production of synthetic crude oil.

VI. CONCLUSIONS

We propose an approach to recasting of a multi-plant
process network into a surrogate network of regression
transformers that capture the essential process input to output
relationships in a data-driven manner, instead of relying

on process simulators or first-principles based approaches
to estimate these relationships. Coupling this representation
with operational constraints lets us develop a prediction-
optimization formulation for data-driven, site-wide optimiza-
tion. A second novelty of this paper is the MILP models
for piecewise linear models and a primal-dual method for
nonlinear models. We presented the efficiency for both
MILP and gradient-based algorithms on solving the set-point
optimization problem with a real application.

REFERENCES

[1] A. M. Alattas, I. E. Grossmann, and I. Palou-Rivera, “Integration of
nonlinear crude distillation unit models in refinery planning optimiza-
tion,” Industrial & Engineering Chemistry Research, vol. 50, no. 11,
pp. 6860–6870, 2011.

[2] I. Alhajri, A. Elkamel, T. Albahri, and P. Douglas, “A nonlinear
programming model for refinery planning and optimisation with rigor-
ous process models and product quality specifications,” International
Journal of Oil, Gas and Coal Technology, vol. 1, pp. 283–307, 2008.

[3] L. T. Biegler and V. M. Zavala, “Large-scale nonlinear programming
using ipopt: An integrating framework for enterprise-wide dynamic
optimization,” Computers & Chemical Engineering, vol. 33, no. 3,
pp. 575–582, 2009.

[4] J. Kim, H.-S. Yi, and C. Han, “A novel milp model for plantwide
multiperiod optimization of byproduct gas supply system in the
iron-and steel-making process,” Chemical Engineering Research and
Design, vol. 81, no. 8, pp. 1015–1025, 2003.

[5] D. Subramanian, P. Murali, N. Zhou, X. Ma, G. C. Da Silva, R. Pavu-
luri, and J. Kalagnanam, “A prediction-optimization framework for
site-wide process optimization,” in 2019 IEEE International Congress
on Internet of Things (ICIOT). IEEE, 2019, pp. 125–132.

[6] P. Donti, B. Amos, and J. Z. Kolter, “Task-based end-to-end model
learning in stochastic optimization,” in Advances in Neural Informa-
tion Processing Systems, 2017, pp. 5484–5494.

[7] B. Wilder, B. Dilkina, and M. Tambe, “Melding the data-decisions
pipeline: Decision-focused learning for combinatorial optimization,” in
Proceedings of the AAAI Conference on Artificial Intelligence, 2019.

[8] M. Lombardi and M. Milano, “Boosting combinatorial problem mod-
eling with machine learning,” in Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence, 2018.

[9] A. P. Tran and C. Georgakis, “On the estimation of high-dimensional
surrogate models of steady-state of plant-wide processes characteris-
tics,” Computers & Chemical Engineering, vol. 116, pp. 56–68, 2018.

[10] A. I. Khuri and S. Mukhopadhyay, “Response surface methodology,”
Wiley Interdisciplinary Reviews: Computational Statistics, vol. 2, no. 2,
pp. 128–149, 2010.

[11] M. Jones, H. Forero-Hernandez, A. Zubov, B. Sarup, and G. Sin,
“Superstructure optimization of oleochemical processes with surrogate
models,” in Computer Aided Chemical Engineering. Elsevier, 2018,
vol. 44, pp. 277–282.

[12] N. Quirante and J. A. Caballero, “Large scale optimization of a sour
water stripping plant using surrogate models,” Computers & Chemical
Engineering, vol. 92, pp. 143–162, 2016.

[13] N. Sadati, R. B. Chinnam, and M. Z. Nezhad, “Observational data-
driven modeling and optimization of manufacturing processes,” Expert
Systems with Applications, vol. 93, pp. 456–464, 2018.

[14] B. Vincent, C. Duhamel, L. Ren, and N. Tchernev, “An industrial
process optimization approach based on input and output statistical
data analysis,” IFAC-PapersOnLine, vol. 48, no. 3, pp. 930–935, 2015.

[15] IBM, “IBM ILOG CPLEX Optimizer,” www.ibm.com/analytics/cplex-
optimizer.

[16] C. M. Bishop, Pattern Recognition and Machine Learning. Berlin,
Heidelberg: Springer-Verlag, 2006.

[17] K. Sun and X. A. Sun, “A two-level distributed algorithm for general
constrained non-convex optimization with global convergence,” arXiv
e-prints, p. arXiv:1902.07654, Feb 2019.

[18] Y. Wang, W. Yin, and J. Zeng, “Global convergence of admm in
nonconvex nonsmooth optimization,” Journal of Scientific Computing,
vol. 78, no. 1, pp. 29–63, 2019.

[19] IBM, “IBM Watson Studio,” www.ibm.com/cloud/watson-studio.
[20] J. Nocedal and S. J. Wright, Numerical Optimization. New York:

Springer, 2006.

