
Finding Optimal Policy for Queueing Models: New Parameterization
Trang H. Tran1 · Lam M. Nguyen2 · Katya Scheinberg 1

1 Cornell University, School of Operations Research and Information Engineering 2 IBM Research, Thomas J. Watson Research Center

Finding Optimal Policy for Queueing Models: New Parameterization
Trang H. Tran1 · Lam M. Nguyen2 · Katya Scheinberg 1

1 Cornell University, School of Operations Research and Information Engineering 2 IBM Research, Thomas J. Watson Research Center

Problem Statement

The optimal control problem of queueing networks has many important applica-
tions in real life, including communications networks, transportation, and man-
ufacturing systems [1]. These problems can be modeled effectively as Reinforce-
ment Learning (RL) environments. We are interested in the optimization aspects
of this approach: how the choices of reward function and policy parameters in-
fluence the efficiency of the optimization process.

We consider a simple parallel queueing system with one server, exponential inter-
arrival and service times: the jobs of class i arrive to the system following Poisson
processes with respective rates λi, i = 1, . . . ,m. The processing times for class
i jobs are i.i.d., having exponential distribution with the respective service rates
µ1, µ2, . . . , µm. The corresponding load condition for this system is:

ρ =
λ1

µ1
+
λ2

µ2
+ · · · + λm

µm
< 1 (1)

We assume that a decision time occurs when a new job arrives to the system or
when the server completes a service. We let c ∈ Rm be the holding cost vector,
and let the holding cost be c⊤s where s ∈ Rm is the observable state. The
following Theorem characterizes the optimal policy for this system.

Theorem 1 - Optimal Policy

For a parallel single server queueing system with infinite buffer, the optimal
policy is the priority policy based on the c-µ rule: The server selects the
job in queue i∗ = argmax{ciµi| for all i such that si > 0} (i.e. choose the
job in the class with the largest cost - expected processing time ratio).

We denote the priority policy by πP .

Linear Policy Representation

First we consider a simple class of linear parameterized policies: given the state
vector s ∈ Nm, we define π(A) = softmax(As), where A is a matrix and the
parameter. This is a special case of the parameterization by neural networks with
softmax activation which is widely used in RL.
Under such a policy, the probability of any action for any state vector is a num-
ber between 0 and 1. In contrast, the priority policy πP is a threshold policy
which chooses one action with probability one. Next, we show that πP can be
approximated arbitrarily closely with our class of parameterized policies.

Theorem 2 - Policy Representation

Consider the call of linear policies described in Section 3.1 and assume that
si ≤ Q for every i = 1, . . . ,m for a given state vector. Let {Ak, k ≥ 0}
be the sequence

Ak =


(Q + 1)m · k + 1 . . . 1

. . . (Q + 1)i · k + 1 . . .
1 . . . (Q + 1) · k + 1
1 . . . 1

 ∈ R(m+1)×m,

and πk = π(Ak) ∈ Rm+1 be the policy corresponding to Ak. We have

•The starting point of the sequence π0 is a random policy that chooses
every action with equal probability.

•The sequence πk converges to the priority policy: πk → πP when k → ∞.

•There does not exist a bounded sequence of matrices A′
k such that se-

quence π(A′
k) converges to the priority policy: πk → πP when k → ∞.

Alternative Parameterization

Theorem 2 shows that the in order to converge to the priority sequence, the policy
parameters have to grow arbitrarily large, moreover, their growth may be as fast
as exponential in the number of queues. Thus we consider an alternative param-
eterization for π. Let B = ln(A) where ln is an element-wise operator and A is
a matrix with positive elements. Let B be the parameters of policy π̄, and the
parameterization be

π̄(B) = softmax(eBs), (2)

We denote this scheme as the logarithm-scale parameterization of policy π̄. The
sequence of matrices Bk associated with Ak is

Bk =


ln[(Q + 1)m · k + 1] . . . 0

. . . ln[(Q + 1)i · k + 1] . . .
0 . . . ln[(Q + 1) · k + 1]
0 . . . 0

 ∈ R(m+1)×m .

The diagonal elements Bk also grow infinitely large but much slower than those of
Ak, which may result in better behavior of the optimization problem (e.g. smoother
objective) when using this parameterization.

Gradient Estimators for Policy Optimization

The function value estimator, inexact zeroth-order oracle is the average cost func-
tion induced by the parameterized policy π(A). Let n be the number of sample
paths and T − 1 be the time horizon, the zeroth-order oracle J̃(A) is

J̃(A) =
1

n

n∑
i=1

C(τi) =
1

n

n∑
i=1

[
1

T

T−1∑
t=0

c(si,t, ai,t)

]
, (3)

where τi is the i-th sample path following policy π(A). We now describe two
popular ways of estimating gradients, thus providing inexact first-order oracles.

Finite Difference Estimator

The Finite Difference (FD) estimator ∇̃J1(A) has the form

∇̃J1(A) =
1

M

M∑
i=1

J̃(A + u · v⃗i)− J̃(A)

u
v⃗i, (4)

where v⃗i, i = 1, . . . ,M is a set of vectors and u is the finite difference step
parameter. We choose the canonical setting where v⃗i, i = 1, . . . ,M are the
unit vectors of the parameter space.

Policy Gradient Estimator

For the time horizon T and number of sample paths N , our Policy Gradient
(PG) estimator ∇̃J2(A) is computed as

∇̃J2(A) =
1

N

N∑
i=1

[
1

T

T−1∑
t=0

∇A log π(A)(si,t, ai,t)

][
1

T

T−1∑
t=0

r(si,t, ai,t)− b

]
,

with b =

1
N

∑N
i=1

[
1
T

∑T−1
t=0 ∇A log π(A)(si,t, ai,t)

]2 [
1
T

∑T−1
t=0 r(si,t, ai,t)

]
1
N

∑N
i=1

[
1
T

∑T−1
t=0 ∇A log π(A)(si,t, ai,t)

]2 .

Key References

[1] J. G. Dai andMark Gluzman. Queueing network controls via deep reinforcement
learning, Stochastic Systems 12(1):30-67, 2022.
[2] Billy Jin, Katya Scheinberg, and Miaolan Xie. High probability complexity
bounds for line search based on stochastic oracles, Advances in Neural Informa-
tion Processing Systems, 2021.

Experiments

We experiment with two parameterizations: the standard linear parameteriza-
tion and the proposed logarithm-scale parameterization. We implement two
gradient estimators and employ an adaptive line-search algorithm (ALOE) [2]
to optimize the cost function.
Below we summarize the load conditions in our experiment setting, and the best
performance of each parameterization (Linear scale and Logarithm scale). The
cost function is normalized to [0, 1]. We report the best cost function achieved in
each setting and note the first order oracle that yields the best result. The last
row reports the confidence intervals of the cost function at the optimal (priority)
policy in each setting.

Settings Low Load Medium Load Balanced Load Heavy Load

Service rates (18, 9, 6) (9, 4.5, 3) (6, 3, 2) (3, 2, 1)

Load param.ρ 1/3 2/3 1 11/6

Linear scale 0.0003 (PG) 0.0018 (FD) 0.0097 (FD) 0.2647 (FD)

Log. scale 0.0004 (PG) 0.0016 (FD) 0.0066 (FD) 0.2586 (FD)

Optimal CI [0.0002, 0.0015] [0.0012, 0.0032] [0.0079, 0.0093] [0.2611, 0.4037]

The figure below compares the minimum cost function achieved by iteration, for
two parameterization scales: logarithm (proposed scale, presented in continuous
solid lines) and linear scale (presented in dashed line).

The figure below compares the correct rate (in percent) achieved by iteration for
two parameterization scales. In most cases, the logarithm-scales perform better
than the standard linear-scales.


