A Service System with Randomly Behaving On-demand Agents

Lam Nguyen, Alexander Stolyar

Department of Industrial and Systems Engineering, Lehigh University

Results: Queue-length-based feedback scheme. Sufficient conditions for the local stability of fluid limits at the desired equilibrium point (with zero queues)

UNIVERSITY.

This model is a generalization of that in [2]. The details of our model, results, proofs, conjectures and numerical/simulation experiments are in [1].

Model

 $(x(\cdot), y(\cdot), w(\cdot)) = \lim_{r \to \infty} \left(\bar{X}^r(\cdot), \bar{Y}^r(\cdot), \bar{W}^r(\cdot) \right)$ satisfies conditions $\begin{cases} x' = \begin{cases} -\gamma y' - \epsilon y, & \text{if } x > -\frac{\lambda(1-\alpha)}{\beta} \\ [-\gamma y' - \epsilon y] \lor 0, & \text{if } x = -\frac{\lambda(1-\alpha)}{\beta} \end{cases} \end{cases}$ $\int y' = \beta x + \frac{1}{2}\alpha\mu(w - |y|)$ $w' = \beta x + \frac{1}{2}(\alpha - 2)\mu(w - |y|)$

Fluid limit dynamics ignoring boundary on x

Consider a dynamic system in \mathbb{R}^3 described by ODE $\begin{cases} x' = -\gamma y' - \epsilon y \\ y' = \beta x + \frac{1}{2}\alpha\mu(w - |y|) \\ w' = \beta x + \frac{1}{2}(\alpha - 2)\mu(w - |y|) \end{cases}$ [(3) is (2) "away from boundary," i.e. when $x > -\frac{\lambda(1-\alpha)}{\beta}$]

Boundary: $x = -\lambda(1-\alpha)/\beta$

 $y \ge 0$

近 「 「 」 」 」 」 」 」

Industrial and

Systems Engineering

Figure 2: Local stability condition holds

Figure 3: Local stability condition does not hold, but A^- is Hurwitz

Conjectures

Conjecture 1: For our system, fluid limit is globally stable if it is locally stable.

System state: (X(t), Y(t), Z(t))System parameters: $\alpha \in (0, 1), \beta > 0, \mu > 0$

Algorithm

Algorithm parameters: $\gamma > 0, \epsilon > 0$

The algorithm controls the number of invited (pending) agents X(t), which responds to different events during time dt as follows:

• A customer arrival with probability Λdt $\Delta X(t) = \gamma$

• An agent acceptance with probability $\beta X(t)dt$ $\Delta X(t) = -(\gamma \wedge X(t))$

• An additional event with probability $\epsilon |Y(t)| dt$ $\Delta X(t) = -\operatorname{sgn}(Y(t)) , \text{ if } X(t) \ge 1$ $\Delta X(t) = 1 \qquad , \text{ if } X(t) = 0 \text{ and } Y(t) < 0$

y < 0

We use the machinery of switched linear systems and common quadratic Lyapunov functions [3] to derive the following results

Conjecture 2: For our system, matrix A^- being Hurwitz is sufficient for local stability of fluid limit. $(A^+$ is always Hurwitz in our case.)

References

[1] L. Nguyen and A. Stolyar.

(3)

A service system with randomly behaving on-demand agents, 2016.

http://arxiv.org/pdf/1603.03413v1.pdf.

[2] G. Pang and A. Stolyar.

A service system with on-demand agent invitations. Queueing Systems, 2015.

[3] R. Shorten, F. Wirth, O. Mason, K. Wulff, and C. King. Stability criteria for switched and hybrid systems. SIAM Review, 49(4):545–592, 2007.

• A service completion with probability $\mu Z(t)dt$ • Agent returns the agent queue with probability α

 $\Delta X(t) = -(\gamma \wedge X(t))$ • Agent leaves the system with probability $1 - \alpha$ $\Delta X(t) = 0$

Main result: Local stability conditions

For any set of positive β , μ , and $\alpha \in (0,1)$, there exist values of $\gamma > 0$ and $\epsilon > 0$ satisfying either

For the parameters, satisfying either the left or right condition of (4), a common quadratic Lyapunov function of the system (3) exists, and the system (3) is exponentially stable.

Note that the left condition of (4) is very easy to achieve in **practice**. Indeed, for any given $\epsilon > 0$, it holds for all sufficiently large γ .

Contact Information

Lam M. Nguyen http://coral.ise.lehigh.edu/lmn214/ lmn214@lehigh.edu

Alexander L. Stolyar http://www.lehigh.edu/~als714/

stolyar@lehigh.edu