SARAH: A NOVEL METHOD FOR MACHINE LEARNING PROBLEMS

USING STOCHASTIC RECURSIVE GRADIENT
Lam M Nguyen - Jie Liu - Katya Scheinberg - Martin Taka¢ (Lehigh University)

The Problem

(Goal: minimize the finite-sum problem

/

min 4 P(z) = izfm)}

\

e cach f;(x) is convex and has Lipschitz continuous
gradient with parameter L

Two special cases
e CASE-A: function P is u strongly convex
o CASE-B: each f; is u strongly convex
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The Algorithm

Algorithm: SARAH vs. SVRG

1: choose xg
2: for s=0,1,2,... do
3: To = Ts
fort=0,1,2,..., m do
choose random i ~ U[{1,2,...,d}]
compute stochastic gradient v,
update Ti+1 = T+ — NUy
end for
9:  choose xs4+1 randomly from {Zo,...,Zm}
10: end for
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A Simple Example with SARAH

rcvl, Moving Average with $pan 100
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Stochastic gradient of SARAH

) 1V (o)1

4

SARAH is converging in each ini

A Simple Example with SVRG

Stochastic gradient of SARAH
This gradient is defined recursively as

® Voy — VP(:Y:O)
o vt =1+ Vi, (Tt) — Vfi,(Tr-1)

Remarks:
1. Eit [Ut] # VP(ft), but E[”Ut] — VP(fIv}t)'
2. No need for extra storage as in SAG/SAGA!
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Stochastic gradient of SVRG
® VUt — vf% (it) _ vf% (fo) - VP(&V:O)
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Number of Effective Passes

Convergence Analysis

E[|VP(:)7] < (5

— \ un(m—+1)

Remarks:

e This is better than convergence of SVRG.

e CASE-B have a slightly better convergence rate.
e In paper we also analyze convex case.

e We have extened it to non-convex case [1].
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Practical variant SARAH

Both SVRG and SARAH need m as an input! The per-

formance is very sensitive on this choice.
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Facts:
e SARAH is converging in each outerloop.

e It would not be efficient to take many tiny steps.

SARAH-+ Algorithm
Let’s break the inner loop when ||v¢||> > ~||lvo||” for some

v € [0,1] (usually v = 0.1 is a good choice).
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Benefit: No need to tune parameter m!

Numerical Experiments
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