The Problem

Goal: minimize the finite-sum problem

\[\min_{x \in \mathbb{R}^d} \left\{ P(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x) \right\} \]

- each \(f_i(x) \) is convex and has Lipschitz continuous gradient with parameter \(L \)

Two special cases

- **CASE-A**: function \(P \) is \(\mu \) strongly convex
- **CASE-B**: each \(f_i \) is \(\mu \) strongly convex

The Algorithm

Algorithm: SARAH vs. SVRG

1. choose \(x_0 \)
2. for \(s = 0, 1, 2, \ldots \) do
3. \(\hat{x}_0 = x_s \)
4. for \(t = 0, 1, 2, \ldots, m \) do
5. choose random \(i_t \sim U([1, 2, \ldots, d]) \)
6. compute stochastic gradient \(\nu_t \)
7. update \(\hat{x}_{t+1} = \hat{x}_t - \eta \nu_t \)
8. end for
9. choose \(x_{s+1} \) randomly from \(\{\hat{x}_0, \ldots, \hat{x}_m\} \)
10. end for

Stochastic gradient of SARAH

This gradient is defined recursively as

\[\nu_0 = \nabla P(\hat{x}_0) \]

\[\nu_t = \nu_{t-1} + \nabla f_{i_t}(\hat{x}_t) - \nabla f_{i_t}(\hat{x}_{t-1}) \]

Remarks:
1. \(E[\nu_t] \neq \nabla P(\hat{x}_t) \), but \(E[\nu_t] = \nabla P(\hat{x}_t) \)
2. No need for extra storage as in SAG/SAGA!

Stochastic gradient of SVRG

\[\nu_t = \nabla f_{i_t}(\hat{x}_t) - \nabla f_{i_t}(\hat{x}_0) + \nabla P(\hat{x}_0) \]

Convergence Analysis

Theorem: (CASE-A). For \(\eta \in (0, 2/L) \) it holds

\[E[\|\nabla P(x_s)\|^2] \leq \left(\frac{1}{\eta(\mu + 1)} + \frac{n L \mu^2}{2 - \mu} \right)^{\frac{s}{2}} \left\| \nabla P(x_0) \right\| \]

Remarks:
- This is **better** than convergence of SVRG.
- **CASE-B** have a slightly better convergence rate.
- In paper we also analyze convex case.
- We have extented it to non-convex case \([1]\).

Practical variant SARAH+

Both SVRG and SARAH need \(m \) as an input! The performance is very sensitive on this choice.

Facts:
- **SARAH** is converging in each outerloop.
- It would not be efficient to take many tiny steps.

SARAH+ Algorithm

Let’s break the inner loop when \(\|\nu_t\|^2 > \gamma \|\nu_0\|^2 \) for some \(\gamma \in [0, 1] \) (usually \(\gamma = 0.1 \) is a good choice).

Benefit: No need to tune parameter \(m \)!