The Problem and Assumptions

The Problem:

$$\min_{w \in \mathbb{R}^d} \left\{ F(w) = \mathbb{E}[f(w;\xi)] \right\}$$

 $-\xi$ is a random variable obeying some distribution

- Assumptions:
 - $F : \mathbb{R}^d \to \mathbb{R}$ is a μ -strongly convex $\exists \mu > 0$ such that $\forall w, w' \in \mathbb{R}^d$: $F(w) \ge F(w') + \langle \nabla F(w'), (w - w') \rangle + \frac{\mu}{2} \|w - w'\|^2$
 - $f(w;\xi)$ is L-smooth for every realization of ξ $\exists L > 0 \text{ such that}, \forall w, w' \in \mathbb{R}^d$: $\|\nabla f(w;\xi) - \nabla f(w';\xi)\| \le L \|w - w'\|$
 - gradient • we can compute unbiased $\mathbb{E}[\nabla f(w_t;\xi_t)] = \nabla F(w_t)$

The SGD Algorithm

- 1: Input: $\{\eta_t\}_{t=0}^{\infty}$ such that $\sum_t \eta_t = \infty$
- 2: choose $w_0 \in \mathbb{R}^d$

3: for
$$t = 0, 1, ...$$
 do

- sample ξ_t
- compute $\nabla f(w_t; \xi_t)$ 5:
- update $w_{t+1} = w_t \eta_t \nabla f(w_t; \xi_t)$ 6:

7: end for Example:

- $F(w) = \frac{1}{2} \left(\frac{1}{2} w^2 + \underbrace{w}_{f_1(w)} \right)$ is smooth and SC
- with probability $(1/2)^t$ we will have $w_{t+1} =$ $w_0 - \sum_{i=0}^t \eta_t$

SGD can go arbitrary far with non-zero probability

Bounded Gradient Assumption

Common Assumption in SGD analysis • $\exists G < \infty$ such that $\mathbb{E}[\|\nabla f(w;\xi)\|^2] \leq G, \forall w$ Clash with Strong Convexity Assumption $2\mu(F(w) - F^*) \le \|\nabla F(w)\|^2 = \|\mathbb{E}[\nabla f(w;\xi)]\|^2$ $\leq \mathbb{E}[\|\nabla f(w;\xi)\|^2] \leq G < \infty$

<u>SGD</u> AND HOGWILD! CONVERGENCE WITHOUT THE BOUNDED GRADIENTS ASSUMPTION Lam M. Nguyen^{1,2} · Phuong Ha Nguyen³ · Marten van Dijk³ Peter Richtárik⁴ · Katya Scheinberg¹ · Martin Takáč¹ ¹Lehigh University \cdot ²IBM Research \cdot ³University of Connecticut \cdot ⁴KAUST

Alternative Bound on Second Moment

• $f(w;\xi)$ is convex:

 $\mathbb{E}[\|\nabla f(w;\xi)\|^2] \le 4L[F(w) - F^*] + N,$

• $f(w;\xi)$ is nonconvex:

$$\mathbb{E}[\|\nabla f(w;\xi)\|^2] \le 4L\kappa[F(w) - F^*] + N,$$

where $\kappa = \frac{L}{\mu}$ and

$$N = 2 \mathbb{E}[\|\nabla f(w_*;\xi)\|^2]$$

Convergence Rate of SGD

•
$$f(w;\xi)$$
 is convex:
Let $\eta_t = \frac{2}{4L+\mu t} \leq \eta_0 = \frac{1}{2L}$. Then
 $\mathbb{E}[||w_t - w_*||^2] \leq \frac{16N}{\mu} \cdot \frac{1}{4L+\mu(t-T)}$
for $t \geq T = \frac{4L}{\mu} \max\{\frac{L\mu}{N}||w_0 - w_*||^2 - 1, 0\}$
• $f(w;\xi)$ is nonconvex:
Let $\eta_t = \frac{2}{4L\kappa+\mu t} \leq \eta_0 = \frac{1}{2L\kappa}$. Then
 $\mathbb{E}[||w_t - w_*||^2] \leq \frac{16N}{\mu} \cdot \frac{1}{4L\kappa+\mu(t-T)}$
for $t \geq T = \frac{4L\kappa}{\mu} \max\{\frac{L\kappa\mu}{N}||w_0 - w_*||^2 - 1, 0\}$

HogWild!

- w_t state of the shared memory after the *t*-th update is fully written
- \hat{w}_t state of the shared memory read which is used to produce w_t

$$w_t = w_{t-1} - \eta_t \nabla f(\hat{w}_t; \xi_t)$$



