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The Problem and Assumptions

The Problem:

min
w∈Rd

{
F (w) = E[f(w; ξ)]

}
– ξ is a random variable obeying some distribution

Assumptions:
• F : Rd → R is a µ-strongly convex
∃µ > 0 such that ∀w,w′ ∈ Rd:
F (w) ≥ F (w′)+〈∇F (w′), (w−w′)〉+µ

2 ‖w−w
′‖2

• f(w; ξ) is L-smooth for every realization of ξ
∃L > 0 such that, ∀w,w′ ∈ Rd:
‖∇f(w; ξ)−∇f(w′; ξ)‖ ≤ L‖w − w′‖

• we can compute unbiased gradient
E[∇f(wt; ξt)] = ∇F (wt)

The SGD Algorithm

1: Input: {ηt}∞t=0 such that
∑
t ηt =∞

2: choose w0 ∈ Rd
3: for t = 0, 1, . . . do
4: sample ξt
5: compute ∇f(wt; ξt)
6: update wt+1 = wt − ηt∇f(wt; ξt)
7: end for

Example:

• F (w) = 1
2 (

1
2w

2︸︷︷︸
f1(w)

+ w︸︷︷︸
f2(w)

) is smooth and SC

• with probability (1/2)t we will have wt+1 =
w0 −

∑t
i=0 ηt

SGD can go arbitrary far with non-zero
probability

Bounded Gradient Assumption

Common Assumption in SGD analysis
• ∃G <∞ such that E[‖∇f(w; ξ)‖2] ≤ G, ∀w

Clash with Strong Convexity Assumption

2µ(F (w)− F ∗) ≤ ‖∇F (w)‖2 = ‖E[∇f(w; ξ)]‖2

≤ E[‖∇f(w; ξ)‖2] ≤ G <∞

Alternative Bound on Second Moment

• f(w; ξ) is convex:

E[‖∇f(w; ξ)‖2] ≤ 4L[F (w)− F ∗] +N,

• f(w; ξ) is nonconvex:

E[‖∇f(w; ξ)‖2] ≤ 4Lκ[F (w)− F ∗] +N,

where κ = L
µ

and

N = 2E[‖∇f(w∗; ξ)‖2]

Convergence Rate of SGD

• f(w; ξ) is convex:
Let ηt =

2
4L+µt

≤ η0 = 1
2L
. Then

E[‖wt − w∗‖2] ≤
16N

µ
· 1

4L+ µ(t− T )

for t ≥ T = 4L
µ

max{Lµ
N
‖w0 − w∗‖2 − 1, 0}

• f(w; ξ) is nonconvex:
Let ηt =

2
4Lκ+µt

≤ η0 = 1
2Lκ

. Then

E[‖wt − w∗‖2] ≤
16N

µ
· 1

4Lκ+ µ(t− T )

for t ≥ T = 4Lκ
µ

max{Lκµ
N
‖w0 − w∗‖2 − 1, 0}

HogWild!

• wt - state of the shared memory after the t-th up-
date is fully written

• ŵt - state of the shared memory read which is used
to produce wt

wt = wt−1 − ηt∇f(ŵt; ξt)

Convergence Rate of HogWild!

– τ - the maximum delay between ”read” and ”write”

Theorem: Let ηt = 4
µt+E

, E = max {16L, 2τµ} then

E[‖ŵt − w∗‖2] and E[‖wt − w∗‖2] are at most

64N

µ

t

(µ(t− 1) + E)2
+O

(
ln t

t2

)
Note: In the paper, we also analyze Lazy Hogwild!
(when only portion of gradient is applied)

Numerical Experiments

– Logistic regression
– covtype dataset
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