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The Problem and Assumptio

The Problem:

min { F(w) = E[f(w;¢)]

weERd

— £ 1s a random variable obeying some distribution

Assumptions:
o [':RY = R is a u-strongly convex
Ju > 0 such that Yw,w’ € R%:
F(w) > F(w')+(VF ('), (w—w'))+5 [w—w’|]?
o f(w;&) is L-smooth for every realization of &
3L > 0 such that, Yw, w’ € R?:
IV f(w; &) = V(w8 < Ljjw— '
e we can compute  unbiased = gradient

LV f(wye; &) = VE (wy)

The SG‘;D Algorithm

. Input: {n:}72, such that > , n; = oo
. choose wy € R4
; fOI‘t:O,l,... do
sample &;
compute V f(wy; &)
' : update Wi4+1 — Wt — ﬁtVf(wt, ft)
. end for

I= Example:
. o F( ):%(%uﬂ—k w ) is smooth and SC

3 o e
e with probability (1/2)" we will have w;, 1 =
Wo — Zj’:o Tt
SGD can go arbitrary far with non-zero
probability
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Bounded Gradient Assumptio

Common Assumption in SGD analysis
e JG < oo such that E[||V f(w; &)||*] < G, Yw
Clash with Strong Convexity Assumption

2u(F(w) — F*) < |VF(w)|2 = | E[V f (w; ]|
< E[|Vf(w; )] < G < o
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Alternative Bound on Second M

o f(w;€) is convex:
E[|Vf(w; )]] < AL[F(w) — F*]+ N,
o f(w;¢) is nonconvex:

BV £(w;€)|*] < ALK[F(w) — F*] + N,

where kK = % and

N = 2E[|V f(w.; )|’

h W =
Convergence Rate of SGD

o f(w;&) is convex:
Let n: = 4Liut < 1o = % Then

16 NV 1
E[l|w: — w.|}] < — -
e —wl?) < =

for t > T = % max{ 2 ||lwo — w|* — 1,0}
o f(w;&) is nonconvex:
Let n: = 4L,3+Mt <1y = ﬁ Then

16 NV 1
uw ALk 4 p(t—1T)

E[llwe — w.|]*] <

for t > T = MT“ max{ “ |lwo — ws||* — 1,0}

HogWild!

e w; - state of the shared memory after the ¢-th up-
date is fully written

e 1W; - state of the shared memory read which is used
to produce wy

wy = we—1 — NV f(We; &)
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Convergence Rate of HogWﬂ

— 7 - the maximum delay between "read” and "write”

,utiLI-E’ E = max{lGL,QT,u} then

Ell|w: — w«||?] and E[||w: — w«||?] are at most

64N t Int
po (u(t—1)+E)? O<t—2>

Note: In the paper, we also analyze Lazy Hogwild!
(when only portion of gradient is applied)

Theorem: Let 7, =

Numerical Experiments

— Logistic regression
— covtype dataset

Training Loss
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