SMG: A Shuflling Gradient-Based Method with Momentum
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We consider the following finite-sum minimization:

min {F(w) = :Lif(w,z)}, (1)

weR?
where f(-;4) : R — R is a given smooth function for i € [n] == {1,...,n}.

Assume that we have access to the first order oracle of f(-;i). Below are

some common sampling schemes:

1. Regular (Standard) Scheme: Uniformly at random: at each iteration #; of
epoch t, sample an index uniformly at random from |n].

2. Shuflling Schemes:

e [ncremental Gradient: use a fixed permutation {1,...,n} for all epochs.

e Shuffle Once: random shuflle one permutation and use it for all epochs.

e Random Reshuffling: random shuffle a new permutation at every epoch.

Assumption 1. Problem (1) satisfies:
(a) (Boundedness from below) F} := inf F(w) > —oo, and dom (F") # ().

weR?

(b) (L-smoothness) f(-;7) is L-smooth for all i € |n]:
|V f(w;2) — Vf(w'i)] < L|lw—w'], for all w,w" € dom

VR

F)

(¢) (Generalized bounded variance) There exist two finite constants ©,0 > 0
such that for any w € dom (F):

SV (wid) ~ VE@)| < O VEw) + o
1=1

Assumption 2. (Bounded gradient) There exists G > 0 such that ||V f(z;7)|| <
G, Vx € dom (F) and 7 € [n].
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Algorithm 1: Shuffling Momentum Gradient (SMG)

.. Imitialization: Choose wy € R and set my := 0.

o fort:=1,2,--- ., T do

5. et wét) = Wy_1; mét> = my_1; and vét) = 0

+  Generate a deterministic or random permutation 7 of [n];

5 for¢i:=0,--- n—1do

- Query 2 974 1)
il o= )+ (1 Bl
7 Choose 772@> = 1 and update fugi)l = Uz@ + %92@
0 () n(t)m@ .
1+1 1 1 1+1
5. end for
0. oet wy = w,%t) and m; = vf,@;
10: end for
1. Qutput: Choose wy € {wy,--- ,wr_1} at random with probability
Plior = i = quﬁl me

e 5 is a hyperparameter and 5 = 0.5 works best in our experiments.

(t)

e m,  is an average of all the gradients computed at different points in the previous
epoch ¢t — 1.

o [llustration: the update term mgl in SMG when g = 0.5:

(1-B)g"
oradient from
current epoch

@
R
=2

oradients from
previous epoch
(equally weighted)

Suppose that Assumption 1 holds for (1). Let {wgw}f:l be generated by
Algorithm 1 with a fixed momentum weight 0 < f < 1 and an epoch

B . 1t for every t > 1. Assume that ny = n, s > 1,21, and

0<mn < #X for t > 1, where K := max {g, 9<5315_)é@+1>}. Then

Fliy) = F] | 90°L7(5 — 3p) (231 77) |
Z;&rzl Tt
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" 2 4
BIVF@I) < = s+ g

e With a constant LR, the convergence rate of SMG is expressed as
O [F(UNJQ> — F*] + 0'2

T2/3
for general shuffling strategies.

, which matches the best known rate in the literature

e This rate also hold for exponential and cosine scheduled LR schemes, as well
as diminishing LR (up to a logarithmic factor).

e With a randomized reshuffling strategy and constant learning rates, the
nl/37T72/3 '

convergence rate of SMG is improved to O (

1|||

e Replacing the update in Step 7 of SMG by a traditional momentum update

m§?1 = Bm§t> + (1 — 5)g§t>, we get Algorithm 2: Single Shuffling Momen-
tum Gradient.

e [llustration: the update term m£21 in Alg 2 when 8 = 0.9:
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Let {wgt)}le be generated by Algorithm 2, using a single shuffling strat-
egy (IG or SO) with 772@ =2 and 0 < n; < ¢ for ¢ > 1. Then, under

Assumption 1(a)-(b) and Assumption 2, we have
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where & := max(n;, n;_1) for t > 2, & = ny, and
. 1
Al = Q[F(’wo) — F*] | (

& | 48
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Applying the previous LR schemes, this theorem leads to the same
convergence rate O(T~2/?) for the traditional momentum update.

We test SMG method with SGD algorithm, ADAM and SGD with momentum.

The first problem is training a neural network to classify images.
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For the second experiment, we test four methods on a non-convex logistic

regression problem. Our tests have shown encouraging results for SMG.
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