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Problem Statement

We consider the following finite-sum minimization:

min
w∈Rd

{
F (w) :=

1

n

n∑
i=1

f (w; i)
}
, (1)

where f (·; i) : Rd→ R is a given smooth function for i ∈ [n] := {1, . . . , n}.
Assume that we have access to the first order oracle of f (·; i). Below are
some common sampling schemes:
1. Regular (Standard) Scheme: Uniformly at random: at each iteration it of

epoch t, sample an index uniformly at random from [n].

2. Shuffling Schemes:

• Incremental Gradient: use a fixed permutation {1, . . . , n} for all epochs.

• Shuffle Once: random shuffle one permutation and use it for all epochs.

• Random Reshuffling: random shuffle a new permutation at every epoch.

Assumptions

Assumption 1. Problem (1) satisfies:

(a) (Boundedness from below) F∗ := inf
w∈Rd

F (w) > −∞, and dom (F ) 6= ∅.

(b) (L-smoothness) f (·; i) is L-smooth for all i ∈ [n]:

‖∇f (w; i)−∇f (w′; i)‖ ≤ L‖w − w′‖, for all w,w′ ∈ dom (F )

(c) (Generalized bounded variance) There exist two finite constants Θ, σ ≥ 0
such that for any w ∈ dom (F ):

1

n

n∑
i=1

‖∇f (w; i)−∇F (w)‖2 ≤ Θ‖∇F (w)‖2 + σ2.

Assumption 2. (Bounded gradient) There existsG > 0 such that ‖∇f (x; i)‖ ≤
G, ∀x ∈ dom (F ) and i ∈ [n].
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Shuffling Momentum Gradient (SMG)

Algorithm 1: Shuffling Momentum Gradient (SMG)

1: Initialization: Choose w̃0 ∈ Rd and set m̃0 := 0.
2: for t := 1, 2, · · · , T do
3: Set w

(t)
0 := w̃t−1; m

(t)
0 := m̃t−1; and v

(t)
0 := 0;

4: Generate a deterministic or random permutation π(t) of [n];
5: for i := 0, · · · , n− 1 do
6: Query g

(t)
i := ∇f (w

(t)
i ; π(t)(i + 1));

7: Choose η
(t)
i := ηt

n and update


m

(t)
i+1 := βm

(t)
0 + (1− β)g

(t)
i

v
(t)
i+1 := v

(t)
i + 1

ng
(t)
i

w
(t)
i+1 := w

(t)
i − η

(t)
i m

(t)
i+1;

8: end for
9: Set w̃t := w

(t)
n and m̃t := v

(t)
n ;

10: end for
11: Output: Choose ŵT ∈ {w̃0, · · · , w̃T−1} at random with probability

P[ŵT = w̃t−1] = ηt∑T
t=1 ηt

.

• β is a hyperparameter and β = 0.5 works best in our experiments.

•m(t)
0 is an average of all the gradients computed at different points in the previous

epoch t− 1.

• Illustration: the update term m
(t)
i+1 in SMG when β = 0.5:

︸ ︷︷ ︸ ︸ ︷︷ ︸
βm

(t)
0 (1− β)g

(t)
i

gradients from gradient from
previous epoch current epoch

(equally weighted)

Nonconvex Convergence Results

Theorem 1

Suppose that Assumption 1 holds for (1). Let {w(t)
i }Tt=1 be generated by

Algorithm 1 with a fixed momentum weight 0 ≤ β < 1 and an epoch
learning rate η

(t)
i := ηt

n for every t ≥ 1. Assume that η0 = η1, ηt ≥ ηt+1, and

0 < ηt ≤ 1
L
√
K

for t ≥ 1, where K := max
{

5
2,

9(5−3β)(Θ+1)
1−β

}
. Then

E
[
‖∇F (ŵT )‖2

]
≤ 4[F (w̃0)− F∗]

(1− β)
∑T

t=1 ηt
+

9σ2L2(5− 3β)

(1− β)

(∑T
t=1 η

3
t−1∑T

t=1 ηt

)
.

• With a constant LR, the convergence rate of SMG is expressed as

O
(

[F (w̃0)− F∗] + σ2

T 2/3

)
, which matches the best known rate in the literature

for general shuffling strategies.

• This rate also hold for exponential and cosine scheduled LR schemes, as well
as diminishing LR (up to a logarithmic factor).

• With a randomized reshuffling strategy and constant learning rates, the

convergence rate of SMG is improved to O
(

[F (w̃0)− F∗] + σ2

n1/3T 2/3

)
.

Single Shuffling Momentum Gradient

• Replacing the update in Step 7 of SMG by a traditional momentum update
m

(t)
i+1 := βm

(t)
i + (1− β)g

(t)
i , we get Algorithm 2: Single Shuffling Momen-

tum Gradient.

• Illustration: the update term m
(t)
i+1 in Alg 2 when β = 0.9:

︸ ︷︷ ︸ ︸ ︷︷ ︸
βm

(t)
i (1− β)g

(t)
i

gradients from gradient from
previous iterations current iteration

(exponentially weighted)

Theorem 2

Let {w(t)
i }Tt=1 be generated by Algorithm 2, using a single shuffling strat-

egy (IG or SO) with η
(t)
i := ηt

n and 0 < ηt ≤ 1
L for t ≥ 1. Then, under

Assumption 1(a)-(b) and Assumption 2, we have

E
[
‖∇F (ŵT )‖2

]
≤ ∆1(∑T

t=1 ηt
)
(1− βn)

+ L2G2

(∑T
t=1 ξ

3
t∑T

t=1 ηt

)
+

4βnG2

1− βn
,

where ξt := max(ηt, ηt−1) for t ≥ 2, ξ1 = η1, and

∆1 := 2[F (w̃0)− F∗] +

(
1

L
+ η1

)
‖∇F (w̃0)‖2 + 2Lη2

1G
2.

Applying the previous LR schemes, this theorem leads to the same
convergence rate O(T−2/3) for the traditional momentum update.

Experiments

We test SMG method with SGD algorithm, ADAM and SGD with momentum.
The first problem is training a neural network to classify images.

For the second experiment, we test four methods on a non-convex logistic
regression problem. Our tests have shown encouraging results for SMG.


