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Abstract—Deep neural networks (DNNs) give state-of-the-art
accuracy in many tasks, but they can require large amounts of
memory storage, energy consumption, and long inference times.
Modern DNNs can have hundreds of million parameters, which
make it difficult for DNNs to be deployed in some applications
with low-resource environments. Pruning redundant connec-
tions without sacrificing accuracy is one of popular approaches
to overcome these limitations. We propose two ¢y-constrained
optimization models for pruning deep neural networks layer-
by-layer. The first model is devoted to a general activation
function, while the second one is specifically for a ReLU. We
introduce an efficient cutting plane algorithm to solve the
latter to optimality. Our experiments show that the proposed
approach achieves competitive compression rates over several
state-of-the-art baseline methods.

I. INTRODUCTION

In recent years, deep neural networks (DNNs) have shown
significant accuracy improvements in a wide variety of
applications including pattern recognition, image classifica-
tion, and speech recognition. With modern large networks
consisting of hundreds of millions parameters [1], DNNs
can require large amounts of storage, massive computing
power, and long inference times. Hence, deploying very
large learned networks to resource-limited devices can be
impractical due to their extensively computational and stor-
age requirements. Furthermore, it has been shown that neural
networks can be heavily over-parametrized [2] and are prone
to over-fitting [3]. Recent works show that their parameters
can be reduced by more than 90% without accuracy drop
[4], [5]. It is a vitally important task to prune deep neural
networks without a considerable loss in accuracy so that
DNNs can be utilized for real-world applications including
low-resource environments such as mobile devices, IoT
edge devices, and real-time prediction. The network pruning
problem has received dramatically increasing attention in the
deep learning community [6].

There are two main lines of neural network pruning
research by removing parameters from an existing network:
regularization [7] and parameter pruning [4], [8]. We par-
ticularly focus on layer-wise pruning methods, which is a
powerful technique to compress neural networks. It excerpts
the intermediate outputs at each layer of the well-trained
network, and enforces consistency between the resulting
response and the pre-trained network response. One of the
first layer-wise methods is Net-Trim [8], which proposes a
convex quadratically constrained ¢; program. Following this

idea, layer-wise optimal brain surgeon method (L-OBS) [9]
eliminates parameters based on second-order derivatives of
a layer-wise error function.

A common approach using the non-convex ¢; norm is
to prune the neural network during training by encouraging
redundant weights to become zero in the training problem
[7], [10], [11]. Our work is the first to apply the £y norm
technique for a layer-wise pruning method. Ideally, the
pruning problem should be formulated as a single opti-
mization problem where we optimize a training loss and
enforce sparsity simultaneously. However, getting a high-
quality solution with two goals: a small training loss and
a very sparse vector solution is changeling due to non-
convexity from both the objective and sparsity constraint.

In this paper, we propose an ¢y-constrained optimization
framework for layer-wise pruning neural networks. For a
general activation function, we formulate the weight pruning
task as the well-known best subset selection problem. For
layers with a rectified linear unit (ReLU), we introduce
an fy-constrained quadratic programming. We provide a
cutting plane method to efficiently solve the structured
quadratic problem to optimality with theoretical convergence
guarantee. Compared to Net-Trim and L-OBS, for the same
sparsity level, the proposed model guarantees a smaller
reconstructed error bound for each layer. Our numerical
experiments demonstrate a state-of-the-art compression rate
for both fully-connected and convolutional neural networks.

II. RELATED WORK

In a seminal work, the authors in [12] developed a
trimming technique, called optimal brain damage (OBD),
to remove parameters based on the minimal change in
training error. The second derivative of the error function
is approximated by a diagonal matrix and calculated by
back-propagation. The optimal brain surgeon (OBS) method
[13] makes no restrictive assumption on the Hessian, and is
able to prune of more weights than OBD. Due to Hessian
inverse computation, these methods are not scalable for
large deep networks. Layer-wise OBS [9] mitigates the issue
by considering a simpler layer-wise error function related
to the input of activation, and pruning each layer of a
trained network independently. The layer-wise pruning idea
is originally proposed in [8], where a convex ¢; norm model
with performance guarantee, specially designed for ReLU
activation, is introduced.



Magnitude-based methods delete weights with the small-
est magnitudes from a threshold. Han et al. [4] propose to
include a retrain step in the framework. Li et al. [14] cal-
culate the layer specific thresholds by solving a constrained
optimization via a derivative-free optimization. The authors
in [15] use the idea of soft weight-sharing to compress the
network. Dynamic network surgery [16] involves two stages:
pruning and splicing. Variational dropout techniques have
also been utilized to sparsify neural networks [17].

Another class of pruning methods are based on enforc-
ing sparsity during training phase such as regularization
methods: ¢; norm [18], o norm [7], and a combination
of (¢1,¢3)-norm [19]. Some {y-constrained models have
been proposed including training the constrained model by
augmented-Lagrangian [10] and connection sensitivity [11].

III. GENERAL ACTIVATION FUNCTIONS

One of popular frameworks for compressing a neural
network consists of three steps: pre-training the network,
removing unimportant components, and re-training the re-
maining structure [4], [8], [S]. In this paper, we introduce a
new layer-wise pruning method for the second step.

A. Overview of layer-wise pruning

Consider a fully-connected feedforward network with L
layers for supervised learning. Given a training data set
{x;,yi}’_;, we train the neural network using the input
x;’ = x; € R™° and minimize the discrepancy between
the true label y; € R™Z and the output XEL) at the final
layer. The network can be represented as a nested function,
where the output at the ¢-th layer is x(*) = (W] x=1) +
b~1), ¢ =1,...,L, where o is an activation function,
Wy = [w1,...,Wpy,| € R™-1%7¢ s a weight matrix, and
b(*~1) € R™ is the bias. By stacking an additional row and
a constant term to W, and x(/~1) respectively, we can recast
the network as X() = ¢(Z"), Z) = W]XU=D ¢ =

L,...,L, where X [XEZ),..',X%@} € R™*" and
70 e R™e*" Here, my is the number of neurons at the

{-th layer.

Suppose that a pre-trained network parameterized by the
set of weights {W,} | is given. Our goal of pruning the
network is to force many elements of W, to be zero and
adjust the values of non-zero entries so that the sparsified
network has a comparable predictive capability. By using the
original training data X and pre-trained weights {W,}Z_ |,
we wish to find the set of sparsest weights W, such that

o(WIXE) ~ o(W/XIED), (1)

while ||Wg||0 < ||VV@||07
forall ¢ =1,..., L, where ||.||o is the £y norm, counting the
number of nonzero entries. However, solving this problem

directly is very challenging because of the non-linearity of
o, and sparsity requirement. We can overcome the issue by

looking for an approximation problem for (1). When the acti-
vation function is ReLU, the authors in [8] propose a convex
£1-norm problem for approximately solving (1) by imposing
a bound on the reconstructed error. They relax the non-
convex constraint by using a number of quadratic constraints
and linear inequalities. We propose a better approximation
for model (1), i.e., resulting a smaller reconstructed error
|o(W]XED) — (W] XED)|| . Moreover, it can deal
with a general activation function.

B. An {y optimization model for pruning

Assume that ¢ is Lipschitz continuous; that is, there exists
C > 0 such that |o(z) — o(y)| < Clz —yl|, Vz,y € R.
Most activation functions such as ReLU o (z) = max(0, z),
sigmoid o(x) = 1/(1 + e~*), hyperbolic tangent o(x) =
tanh(x), and o(z) = arctan(z) satisfy the assumption with
C = 1. For these functions, we have

lo(WIXE) — o (WIXED) |
< WIXED - WX .

With the Lipschitz continuity assumption, we can achieve
the goal in Eq. (1) by considering the proximity requirement
for the input of the activation function

W/XED ~ WIXED | while [Wollo < [Wello (2)

for all £ = 1,..., L. More precisely, we propose to solve
the following ¢y-constrained optimization problem for each
layer ¢ to get a sparse weight matrix Wy

min - G[WIXED = 2O st[Wlo <r,  (3)
where x is the maximally allowable number of nonzeros.
Note that X(“~1) and Z® come from the pre-trained net-
work. The model (3) is the well-known best subset selection
problem. It can be efficiently solved by some exact methods
[20] or local methods such as stochastic gradient descent.

It has been known that we can vectorize filters of each
channel in convolutional neural networks and treat them as
fully-connected feedforward layers, see for example, Section
3.4.2 of [9]. Hence, we have only presented our techniques
for feedforward networks, but will also show the numerical
results for convolutional networks.

IV. RELU ACTIVATION FUNCTION

We notice that ReLU is one of the most widely-used
activation functions, thus we are particularly interested in
handling this function. When ReLU is employed as the
activation for each layer, we can further tighten the model
(3). That is, for the same layer-wise error ||o(W[] X(¢~1)) —
o(W]XE1)|| g, we could get a sparser solution by using
another model proposed in this section rather than the one
obtained from (3).

We note that O'(Zgé)) is non-negative. In some applica-

tions, many elements a(ZZ-(?) are zero. If (W] X)), <



0 and Z\) < 0, then o(WXE D), ;) = o(Z\)). 1t

suggests that we should not impose (VAVZTX(Z*U)M close
to Zi(? for this case. For notational simplicity, we will omit

the index £ in some cases such as X(*~1) =[x, ..
there is no confusion. Define two index sets:

. Xy if

I =A{(i,j): Zi(? >0}, A={(7): Zl.(? < 0}.

We propose to solve the following problem (4) when o is
the ReLU function:

i FOW.9) = IWTXCD 200+ 3 o
s.t. W;er <y, , V(i,j)eA (i,5)€

Yij = 0, V(i,j) e A )
[Willo < &,

where [X]z is a vectorized form whose entries are X; ;’s
for all (i,7) € Z. The inputs for activation functions are
encouraged to be close to each other only over the set Z.
We allow some entries (W] X(“~1), i in set A associated
with Zi(? = (W] X=1), - < 0 to become strictly positive,
but incurring a cost 2, = (W] X(=D)2

Remark 1. The value y; ; can act as the hinge loss for
WTXj. We can obtain an equivalent formulation for (4) by

i
directly considering a squared hinge loss on wiTXj values

rr‘l)%’n [[WTXED —ZO)7)12 4+ 3 max(w] x;,0)?

st [Wllo < 5. (e

&)
However, the non-differentiability of the the hinge loss makes
the optimization problem (5) difficult to solve. Existing
algorithms such as sub-gradient descent algorithms and
SGD are often slow. The advantage of our model (4) is the
smoothness property and the decomposable structure. Our
setting is similar to the well-known support vector machine
(SVM) models [21]. The non-smooth hinge loss version of
SVM is neat, but challenging to solve it. Most practical
algorithms for SVM are devoted to the other smooth SVM
models. Problem (4) plays the same role as the primal
version of SVM. It is also a smooth quadratic program, our
next outer-approximation algorithm can efficiently exploit its
special structure.

Our model (4) is tighter than existing layer-wise models.
Particularly, for the same number of nonzero weights, the
reconstructed error bound for each layer of the pruned
network obtained from (4) is less than or equal to those given
by Net-Trim and L-OBS. Formally, we have the following
theorem.

Theorem 1. Consider a normalized pre-trained network
({Wl i X) such that |Wy|1 = 1 for £ = 1,..., L.
Suppose ({W,}L_,;X) is the pruned network provided by
Net-Trim, where the error in each layer { is €, (defined in Eq.

(3) of [8]) and 35—, ||W|lo = &. Then there exists a net-
work ({Wg}eLzl; X) pruned by our model Eq. (4) with non-
negative values 0 < é; < € such that Zle [Wello < &
and the reconstructed error o?eys

IXO —XO)p <> e, Vi=1,..., L
j=1
Here X9 = ReLU(W} X)) and X©) = X. Further-
more, it holds that Zﬁ:l é < Z?:l € and strict inequality
occurs if there exists y; ; > 0 for some (i,j) € A in (4).

Note that the reconstructed error in Net-Trim obeys
X — XO||p < Z§:1 & and & > ¢é. Hence, our
model (4) gives a better upper bound for the reconstructed
error. The claim is still true when we compare our model (3)
with L-OBS since L-OBS uses a heuristic block coordinate
search for reducing the error. L-OBS can reach a sub-optimal
solution. As a consequense, we can apply performance guar-
antee results from Net-Trim and L-OBS to our models (3)
and (4).

A. Cutting Plane Algorithm

The problem (4) is a large-scale constrained optimization
problem, existing methods such as interior-point methods
and augmented Lagrangian method find it hard to solve.
We introduce an efficient algorithm for solving (4), that can
exploit its special structure. Observe that |.A| is often very
large, e.g. O(nmy), we need to deal with a large number
of constraints (i.e., 2|.A|) as well as additional variables y; ;
(i.e., |A]) for problem (4). As an example, the pre-trained
network for LeNet-300-100 applied to MNIST [22] has the
following values for |Z| and |.A| for each layer as shown in
Table I.

Table I: Cardinality for index sets Z and A

Layer IZ| |A] IAI/(AL+1Z1) (%)
1 4140K  13680K 76
2 2340K  3660K 61

We could expect that at the optimal solution of (4),
only a very small portion of entries y; ; is strictly positive
and most of them are zero. That is, to maintain a small
reconstruction error with a sparse solution, a very few entries
w/lx;,(i,j) € A, may need to be changed to positive. We
will predict these nonzero elements and gradually add them
into our model.

We recast (4) as a two-stage problem, whose objective is
represented as a function of W:

me
min R(W) = [|[|[WTx(¢-D _ 7(®) 2y wi) (6
Wi W) I LH Z;qﬁ( ) (6)

where ¢(w;) = n;in Z(i,j)e.A yfj
s.t. wiij <wyij, Y(,j)eA (N

vij >0, V(i,j) € A



Our key idea is to begin with a starting point W () and
successively minimize an approximation of R(W) with a
sequence of first-order surrogate functions for ¢(w;). We
take advantage of the fact that most of {¢(w;)};"4 take
zero value at the optimal solution.

We can show that ¢(w;) is the convex function and a
subgradient can be evaluated quickly. We will approximate
¢(w;) from below by a collection of linear inequalities.

Theorem 2. ¢(w;) is convex and its subgradient is

2 ¥ if |A]>0
(i,)eA

0, otherwise,

(W] xj)%;,

op(w;) =

where A = {(i,§) € A:w]x; > 0.

At the k-th iteration of our algorithm described below,
for each neuron ¢ € {1,...,my}, piece-wise linear lower
approximations for ¢(w;) can be generated as

(W) + 9w T (w; — w) <u

for every t = 1,...,k, where u; is a surrogate of ¢(w;). It

is equivalent to

2 Y ) wi— 3 (w'

(i,4)€A (4,§)€A

X])2 S Uy,

T
in short, agt) w; +bl(-t) <w;, Vt=1,...,k. Forany k > 0,
let us define Cr, = {(4,¢t) : 1 <t < k,1 < i < my}. An
approximation problem for (6) is
min B(W.w) = || [WTX = 2] >+ X7 u,
st. [[Wlp <k
T
al w40\ <y V(i t) € Gy

K3

uiZO,Vi:L...7mg.

®)

Problem (8) is much simpler to be solved than (4) when
ICk| < |A|. For our network pruning application with
negligible accuracy loss requirement, we expect that a very
few elements u; are strictly positive at the optimal solution
of (6). As a result, it leads to a small cardinality |Cy|. (It will
be numerically confirmed later in the experimental section
V-B.) As shown in Table L, the value |.A] is often very large.
Our proposed cutting plane method for solving (4), described
in Algorithm 1, will make use of the property |Cx| < |.A|.

We can prove that the algorithm converges to an optimal
solution of (4).

Theorem 3. If Algorithm 1 finitely terminates at the k-th
iteration, then (W®) v/u(®) is an optimal solution of (4).
Otherwise, if we assume that W% is uniformly bounded,
then the sequence of iterates {(W®) uF))}, 5, satisfies

(k)a Vv u(k)) = F(W*ay*)v

where (W*,y*) is an optimal solution of (4).

lim F(W

k—o0

Algorithm 1: Cutting Plane Algorithm - CPA

Initialization: Solve the following to obtain W)
: T 2
min || (WX 2] |

©)
st |[Wlo <

and set ugl) =0,Vi=1,...,my.
for k=1,2,... do
(@ If Y7 H(wihy = > u™ | then terminate.
(b) For each i € {1,... mg} we generate a new

¥

cut for problem :a(k) w; + bgk) < u;, where
k k k)T

B =23 (w s, 80 = = 3wl )2

(i,5)€A (i,j)eA

(¢) Solve problem (8) to get W +1) and u+1),

B. Solving Subproblems

In this section, we investigate algorithms to solve sub-
problems (8), (9), and (3). We can solve the problem (8)
by the alternating direction method of multipliers (ADMM).
We reformulate the linear inequalities as follows

T
al(.t) W, + b,Et) — Uyj + Vi = 0, (10)
Vit 2 07 (Z,t) S Ck.
We note that the problems (9), (3), and the ones in ADMM
can be expressed in the following finite-sum form

min E fu(w) =
weRd:|wlo<k

for some vectors c,a, € Rd and b, € R. As explained in
[23], stochastic gradient decent algorithms will work well if
the variance of gradients V f,,(w) evaluated at the optimal
solution of ¢ (w) is relatively small. This is what we could
T
expect since the losses || [WTX — Z}I |? and (agt) w; +
bl(»t) (k) + vz( 2)2 should be small in our applications. As
a result we use SARAH [24] with a sparsity projection step
for solving these subproblems.

((agw —b,)? +c"w))

V. NUMERICAL EXPERIMENTS

This section first shows the benefit of the proposed
models (3) and (4) for layer-wise pruning in deep neural

Table II: Model reconstruction error results

Method 1(%) 3 (%) 5 (%) 7 (%) 9 (%)

Size (m, n)

Net-Trim 4218 3.712 2.969 1.249 0.712
Model (3) 1.731 0.576 0.216 0.071 0.011
Model (4) 1.674 0.453 0.165 0.042 0.006

(2000, 5000)

Net-Trim 6.332 5.675 3.123 1.416 0.164
Model (3) 2.431 0.860 0.299 0.102 0.0154
Model (4) 2.255 0.506 0.079 0 0

(2000, 10000)

Net-Trim 7.730 6.500 2.827 0.092 0.016
Model (3) 3.086 0.949 0.291 0.076 0.007
Model (4) 2.614 0.312 0.0001 0 0

(2000, 15000)

Net-Trim 8.055 6.720 3.316 0.957 0.081
Model (3) 2.140 0.705 0.269 0.083 0.011
Model (4) 1.984 0.469 0.106 0.010 0

(5000, 20000)




networks in terms of the reconstruction error quality. We
then demonstrate a good scalability of the proposed CPA
algorithm for solving large-scale problems (4). Finally, we
test pruning performance for popular neural networks using
real-world data sets.

For CPA, we terminated the algorithm when
I g(wy — o ulP| < 1074 The penalty
parameter (3 for the augmented Lagrangian term in ADMM
is set to be 1.0. Starting points u®,v() and A for
ADMM are initialized at zero. For SARAH, we set
w(© = 0,7 =10"* and h = 0.5d. Our code is written in
Python and run on a machine with Nvidia Titan V graphics
card and 32G memory.

A. Reconstructed Error Comparison

In this subsection, we numerically compare the recon-
structed error of our pruning models (3) and (4) with
Net-Trim [8], and validate the theoretical result given in
Theorem 1. We use synthetic data with various sizes for
these experiments.

For a given matrix A € R™*™, a vector b € R™, and
a fixed sparsity level x, we compare the reconstructed error
for each layer computed by

error = ||o(A%X) — o(b)|?/m. (11)

Here, X € R”" is the sparse solution obtained from
each model (3), (4), and Net-Trim. We tune the ¢; penalty
parameter for Net-Trim so that the cardinality of its solution
is about .

We now discuss how to generate the data for A and b.
The entries of A are randomly generated from the standard
uniform distribution on the open interval (—10,10). As
observed in [4], the pruned weights can form a bimodal
distribution; hence the non-zero entries for ground-truth
weight vector Xy, are sampled from a bimodal Gaussian
distribution. The means are -0.5 and 1, and standard devi-
ations are 0.75 and 1.2, respectively. The sparsity for the
f%round-tmth weight vector Xi... is set to be 10% (i.e.,
w = 0.1). The observed vector is b = Axy,ue + 06,
where the noise 8 is sampled from a Gaussian distribution
with mean zero and variance of 1073, As shown in Table
I, practical values for |A| = |[{i : b; < 0} are often large,
dominate |Z| = [{¢ : b; > 0}|. Thus we choose |A| = 0.7m.
We can achieve this goal by randomly selecting positions
for negative b;’s and simultaneously adjusting the sign of
row A(i,:) and §; to (—A(3,:),—9;) if needed.

In Table II, we report the reconstructed error (11) for
three models with different sparsity levels 100 x ”f#(%)
for various problem sizes (m,n). As we can see, the ¢;-
based model Net-Trim gets the highest errors, they are much
larger than those given by (3) and (4). We notice that even
model (3) is designed for a general activation function and
Net-Trim is customized only for ReLU, but (3) still gets a
better performance over Net-Trim. Our model (4) has the
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Figure 1: The performance of CPA

smallest error, it can exploit the special structure of ReLU
and outperforms the general-purpose model (3). In some
cases when retaining 7% or 9% of non-zero entries, model
(4) incurs no reconstructed error.

B. Performance of CPA

Now we investigate the performance of CPA algorithm us-
ing the same synthetic data generation mechanism proposed
in Subsection V-A. We fix the sparsity level constraint at
3%, i.e. ||x]lo = 0.03 * n, m = 10000, and vary the value
of n from 103 to 10°. In Figure 1 we present the running
times in seconds and the number of iterations for CPA. As
we mentioned, the main motivation of two-stage CPA is to
handle cases when |A| is large (relative to |Z|), and at the
optimal solution many sub-problems of the second stage (7)
are inactive, that is, wiij < 0 (then ¢(w;) = 0). The
latter is related to the number of cuts added to problem (8).

More precisely, we expect that the ratio Ij} is small, where

A=1{ie A: Al,)%x >0} and A = {i : b; < 0}.
Hence, we also show the ratio |A|/|A| in percentage. They
are always less than 5.5% in these test cases. From Figure
1 we can see that the number of iterations for CPA is small,
varying from 3 to 7. The algorithm attempts to predict the
indices ¢ € A so that A(i,:)x > 0 at the optimal solution,
after a few iterations CPA correctly predicts the active set
A. The ratio |.A|/|.A| is small, which can explain why only
a small number of iterations for CPA is needed. Finally,
we observe that the algorithm scales well to large-sized
problems with respect to running times.

C. Pruning Neural Networks

We conducted our experiments for pruning four popular
neural network architectures consisting of a fully-connected
network LeNet-300-100 [22] and three convolutional neural
networks: LeNet-5-Caffe [17], VGG-16 [1], and ResNet-50
[25] for classification tasks. We used three standard datasets,
which are MNIST for training LeNet-300-100 and LeNet-5-
Caffe networks, CIFAR-10 for training VGG-16 network,
and ImageNet ILSVRC-2012 for training ResNet-50.

To obtain sparse networks by pruning, we first well
trained these networks by using Adam in TensorFlow with
a learning rate of 10~* and a batch size of 128. After using
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our layer-wise pruning method in the second step, we also
retrained the network for nonzero weights as suggested in
[4]. An {5 regularizer with a regularization parameter of
10~° was used in both pre-trained and re-trained networks.
In particular, we applied our pruning technique to these
networks by solving the problem (4) for ReLU activation
layers by the cutting plane algorithm and problem (3) for
other activation functions or loss layers. These models can
handle skip connections as in ResNet-50 by sparsifying
inputs of activation functions. Our proposed pruning method
is denoted by “CPA”.

We compare the proposed CPA with state-of-the-art base-
line methods: threshold pruning (THP) [4], layer-wise op-
timal brain surgeon (L-OBS) [9], dynamic network surgery
(DNS) [16], soft weight-sharing (SWS) [15], group ordered
weighted ¢;_¢5 (GrOWL) [26], single-shot network pruning
(SNIP) [11], sparse variational dropout (SparseVD) [17], and
global sparse momentum (GSM) [27]. We are interested in
the compression performance for the networks, where each
method results in without or with little drop of top-1 test
accuracy.

First, we test the behavior of our pruning method for
different levels of sparsity on two networks: LeNet-300-
100 and LeNet-5-Caffe. We show in Figure 2 the trade-
off curve between accuracy drop and number of retained
parameters, which is represented as a compression rate, for
the proposed method CPA and THP. The compression rate
is defined by the ratio of number of nonzero weights in
the original model versus the compressed network. For each
method, we present the test accuracy for both after layer-
wise sparsification and retraining steps. We observe that our
model (4) takes into account minimizing the reconstruction
error when pruning, thus CPA can compress these networks
with a moderate compression rate without accuracy loss even
no retraining is needed. For a very high compression rate,
a retraining step only helps to increase a few percentages
of accuracy. Nevertheless, the accuracy for magnitude-based
pruning THP after sparsification without retraining drops
quickly as sparsity level increases, and the test accuracy gaps
between sparsification and retraining are often large.

Next, in Table III we report the final compression
rate (“Compression Rate”) for all above-mentioned meth-

Table III: Comparison of pruning results (ED = Error Drop, CR =
Compression Rate)

Method Top-1 Error (%) ED  Sparsity per Layer (%) CR
MNIST - LeNet-300-100 - 267K
THP 1.64 — 1.59 -0.05 92.0 - 91.0 - 74.0 12
L-OBS 1.76 — 1.82 0.06 14
SWS 1.89 — 1.94 0.05 23
GrOWL 1.70 — 1.90 0.20 24
SNIP 1.70 — 2.40 0.70 50
DNS 2.28 — 1.99 -0.29 98.2 - 98.2 - 94.5 56
SparseVD 1.64 — 1.94 0.28 98.9 -97.2 - 62.0 68
GSM 1.81 — 1.82 0.01 60
CPA 1.77 — 1.73 -0.04 99.2 - 98.0 - 65.0 85
MNIST - LeNet-5-Caffe - 431K
THP 0.80 — 0.77 -0.03 34.0 - 88.0 - 92.0 - 81.0 12
L-OBS 127 — 1.27 0.00 14
SWS 0.88 — 0.97 0.09 200
SNIP 0.90 — 1.10 0.20 100
DNS 091 — 091 0.00 86.0 - 97.0 - 99.3 - 96.0 111
SparseVD 0.80 — 0.75 -0.05 67.0 - 98.0 - 99.8 - 95.0 280
GSM 0.79 — 0.94 0.15 300
CPA 0.81 — 0.79 -0.02  79.0-99.0-99.8-956 317
CIFAR-10 - VGG-16 - 15.9M
GrOWL 6.60 — 7.30 0.70 15
SparseVD  7.30 — 7.30 0.00 48
CPA 7.22 — 7.21 -0.01 56
ImageNet - ResNet-50 - 25.5M
L-OBS 2.2
GSM 2428 — 25.70 1.42 5.0
CPA 23.82 — 23.88 0.06 4.8

ods together with the number of model parameters for
pre-trained networks (“#Params”), the test error for the
original and pruned networks (“Top-1 Error”), the ac-
curacy loss (“Error Drop”), and sparsity for each layer
(“Sparsity per Layer”). We can see that our {y-based op-
timization approach CPA achieves the highest compression
rate compared to other state-of-the-art methods for 3 out of
4 neural networks. For ResNet-50, GSM has a slightly better
compression rate than that of our method (5.0 versus 4.8),
but it incurs a higher accuracy drop than CPA (1.42 versus
0.06). Obviously, CPA outperforms L-OBS, one of the best
layer-wise pruning methods.

VI. CONCLUSIONS

In this paper, we proposed a novel layer-wise pruning
method CPA for a deep neural network based on /-
constrained optimization. For a general activation function,
we formulate the task of removing unimportant weights as
solving the best subset selection problem. For a layer em-
ploying the rectifier, we have introduced an ¢y-constrained
quadratic programming and a cutting plane algorithm. These
models have a smaller reconstructed error for each layer
than existing methods Net-Trim and L-OBS. Furthermore,
we have provided a convergence analysis for the cutting
plane algorithm with a global convergence guarantee.
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