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ABSTRACT Adversarial machine learning defenses have primarily been focused on mitigating static,
white-box attacks. However, it remains an open question whether such defenses are robust under an adaptive
black-box adversary. In this paper, we specifically focus on the black-box threat model and make the
following contributions: First we develop an enhanced adaptive black-box attack which is experimentally
shown to be ≥ 30% more effective than the original adaptive black-box attack proposed by Papernot et al.
For our second contribution, we test 10 recent defenses using our new attack and propose our own black-box
defense (barrier zones). We show that our defense based on barrier zones offers significant improvements in
security over state-of-the-art defenses. This improvement includes greater than 85% robust accuracy against
black-box boundary attacks, transfer attacks and our new adaptive black-box attack, for the datasets we
study. For completeness, we verify our claims through extensive experimentation with 10 other defenses
using three adversarial models (14 different black-box attacks) on two datasets (CIFAR-10 and Fashion-
MNIST).

INDEX TERMS Adversarial machine learning, adversarial examples, adversarial defense, black-box
attack, security, deep learning.

I. INTRODUCTION

There are many applications based on Convolution Neural
Networks (CNNs) such as image classification [1], [2], object
detection [3], [4], semantic segmentation [5] and visual con-
cept discovery [6]. However, it is well-known that CNNs are
highly susceptible to small perturbations η which are added
to benign input images x. As shown in [7], [8], by adding
visually imperceptible perturbations to the original image,
adversarial examples x′ can be created, i.e., x′ = x+η. These
adversarial examples are misclassified by the CNN with high
confidence. Hence, making CNNs secure against this type of
attack is a significantly important task.

In general, adversarial machine learning attacks can be
categorized as either white-box or black-box. This catego-
rization depends on how much information about the clas-
sifier is necessary to run the attack. The majority of the
literature has focused on white-box attacks [9]–[11] where
the classifier/defense parameters are known. Likewise, the
majority of defenses have been designed with the goal of
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FIGURE 1: The robust accuracy (1-α) of each of the 11
defenses analyzed in this paper. For a given defense the
robust accuracy is computed as the minimum robust accuracy
achieved over all 14 types of black-box attacks. Notice that if
no bar is present, then this means 0% robust accuracy.

thwarting white-box attacks [12]–[24]. In this paper, we
focus on black-box attacks, where the classifier parameters
are hidden or assumed to be secret. This type of adversary
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represents a more practical threat model than the white-box
attacker [25]. This is in part due to the fact the adversary
cannot access the classifier parameters, but is still able to
successfully create adversarial examples [25], [26]. Despite
not having the defense parameters, the black-box adversary
may still query the defense, be able to access X (the training
dataset for the defense), or build a synthetic model to assist
them in creating adversarial examples. By analyzing defenses
through a black-box adversarial lens, we help complete the
security picture by offering both new attack and defense
perspectives to the community. Specifically we make the
following contributions:

1) Mixed Black-Box Attack: We develop an enhanced
version of Papernot’s black-box attack [26] by expand-
ing the amount of data available to the attacker and
changing the final attack generation method φ. These
changes significantly improves the attack success rate,
i.e. > 30% improvement on CIFAR-10 and Fashion-
MNIST.

2) Barrier Zone Defense: We develop a novel defense
based on barrier zones – coined BARZ. We show barrier
zone based defenses can outperform all 10 other recent
defenses studied in this paper. These defenses includes
Madry’s Adversarial Training [27], Barrage of Random
Transforms [22] and Ensemble Diversity [24] just to
name a few. A synopsis of our results is displayed in
Figure 1 where we show the minimum robust accuracy
of each defense under all 14 types of black-box attacks.

3) The δ Metric (minor contribution): In adversarial ma-
chine learning, every defense comes with two dis-
tinct values to consider. These values are the cost of
the defense (drop in clean accuracy) and the robust-
ness/security (performance on adversarial data). We
propose an intuitive way to help gauge this trade-off
between robustness and cost in the form of the δ metric.

A. COMPARING DEFENSES
Figure 1 shows how the robust accuracy of the BARZ defense
(defined as 1 − α, where α is the attack success rate of
the best out of 14 types of black-box attacks) compares
to 10 other recent defenses from literature. The literature
defines the attack success rate α as the fraction of adversarial
examples that are misclassified by the defense. Here it is also
important to precisely define the term adversarial example.
In short, adversarial examples are clean images that are
correctly identified by the classifier in their untampered form,
and to which adversarial noise has further been added by the
attacker.

For this reason, using only the attack success rate α does
not give the complete picture (i.e. only α is shown in Figure
1). The attack success rate α only corresponds to the fraction
of original images which the defense classifier can correctly
label. In essence, for any given defense d, α depends on the
clean accuracy of the defense pd and not the state-of-the-
art or best achievable clean accuracy p. Here p specifically
refers to the accuracy measured on the clean images, without

any defense i.e., the clean accuracy. When a defense is
present, we denote the corresponding clean accuracy of the
defense as pd. So, to complete the story of Figure 1, we need
to understand to what extent, the defense itself leads to a
lowering of the clean accuracy of the vanilla scheme from
p down to pd.

TABLE 1: Accuracy for non-malicious and malicious envi-
ronments.

Vanilla Defense

non-malicious p pd
malicious ≈ 0 pd · (1− α)

Comparing defenses along these two separate metrics of
(a) robust accuracy 1 − α (how well the attacker is able to
defeat the defense) and (b) clean accuracy pd of the defense
itself (without adversarial presence) leads to fuzziness. It is
not clear which metric is considered more important or what
combination is ’best’. The first row in Table 1 depicts the
non-malicious environment (i.e., no adversary) and shows
the accuracy p of the vanilla scheme, which is the best we
can achieve to-date, and the accuracy pd of the defense,
which is less than p as explained above. For the malicious
environment, the vanilla scheme cannot achieve any accuracy
because α = 0 (see the black-box boundary attack in Figure
2). This type of attack can always successfully transform a
correctly classified image into an adversarial example that
is misclassifed by the vanilla scheme. The probability of
proper/accurate classification by the defense in the presence
of adversaries is equal to pd · (1−α) in the lower right corner
of Table 1, since the defense properly labels a fraction pd if
no adversary is present, and out of these images a fraction α
is successfully attacked, if an adversary is present.

To avoid any fuzziness, we combine both metrics pd and
1 − α into a single ’δ-metric’: We define δ as the drop in
accuracy from the clean accuracy p of the vanilla scheme in
the non-malicious environment (top left corner) to the accu-
racy of the defense in the malicious environment pd · (1−α)
(bottom right corner):

δ = p− pd · (1− α).

When we analyze the non-malicious environment we are
only interested in the clean accuracy of the defense – because
we do not assume any attack. This gives Figure 2 where
the y-axis corresponds to the accuracy pd for the defense in
the non-malicious environment and the x-axis corresponds to
the accuracy for the defense in the malicious environment –
that is, the x-axis represents the drop δ from clean accuracy
of the vanilla scheme in the non-malicious environment to
the accuracy of the defense in the malicious environment
(the price for resistance against adversarial examples). We
notice that the x-axis and y-axis can map in a straightforward
way to the clean defense accuracy pd and robust accuracy
1−α themselves, which we could have reported as the x-axis
and y-axis in our plots instead. But this would not visually
make clear what combination (pd, 1 − α) is the best in a
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FIGURE 2: The δ metric vs clean accuracy pd for the
boundary attack. The BARZ results are shown in green and
the vanilla result is shown in gray.

malicious environment. We prefer to plot the δ-metric as this
corresponds directly to the (drop in) accuracy of the defense
classifier in the malicious environment.

In practice, when evaluating a defense, we not only take
into consideration the accuracy p − δ of the defense in the
malicious environment but also the accuracy of the defense
in the non-malicious environment given by pd in the top right
corner of Table 1. From a pure machine learning perspective,
we want a defense which does not affect p ’too much’ –
in other words the drop γ = p − pd should be small and
limited to a couple of percentage points. However, security
often does not come for free and in order to minimize δ we
may need to sacrifice much more than a couple of percentage
points. This means that we need to study a trade-off between
minimizing δ and an acceptable pd. This paper presents such
a study and our defense BARZ is aimed at minimizing δ
despite a possibly significant drop γ from p to pd = p − γ
in the non-malicious environment. It turns out that this leads
to a robust accuracy for BARZ which outperforms those of
other defenses as depicted in Figure 1 and Figure 2.

B. OUTLINE
The rest of the paper is organized as follows: In Section II
we discuss black-box adversaries, why we focus on certain
attacks and our new mixed black-box attack. In Section III we
discuss the defenses we study, the security principles behind
them and why we selected these defenses for analysis. In
Section IV we introduce the mathematical intuition behind
the security principles in the barrier zone defense. We discuss
how barrier zone are realized in practice and show empirical

proof of them as well, in Section IV. In Section V we
explain how to concisely analyze the efficiency of a defense.
We give experimental results for all 11 defenses and 14
attacks in Section VI. Lastly we offer concluding remarks
in Section VII.

II. ATTACKS
The general setup in adversarial machine learning for both
white-box and black-box attacks is as follows [28]: We as-
sume a trained classifier f with a correctly identified sample
x with class label y. The goal of the adversary is to modify
x by some amount η such that f(x+ η) produces class label
ŷ. In the case of untargeted attacks, the attack is considered
successful as long as ŷ 6= y. In the case of targeted attacks,
the attack is only successful if ŷ 6= y and ŷ = t where t
is a target class label specified by the adversary. For both
untargeted and targeted attacks, typically the magnitude of
η is limited [8] so that humans can still visually recognize
the image.

The difference between white-box and black-box attacks
lies in how η is obtained. In white-box attacks, η may be
computed through backpropagation on the classifier or by
formulating the attack as an optimization problem [7], [11],
[29] which takes into account the classifier’s trained param-
eters. The white-box adversary has access to the trained
parameters which can be used to compute gradients – in
essence, the white-box adversary has access to a gradient
oracle (which when queried spits out gradient information).

Black-box attacks on the other hand do not have access
to the classifier’s parameters when generating η and must
rely on other information. The black-box adversary may have
access to the classifier itself which upon querying returns a
score vector or the label for which the score is maximized –
we call this a black-box oracle. Besides a black-box oracle,
the black-box adversary may also have information about the
training data that was used to train the classifier.

From a crypto perspective, a white-box adversary is strictly
stronger than a black-box adversary and also has access to the
black-box oracle. However, we often forget that the classifier
parameters known to the white-box adversary can not only be
used to compute a gradient oracle but also a black-box oracle.
This is because we often think that gradient information
leads to more powerful attacks, hence, we may not need
to consider black-box attacks. A defense that demonstrates
robustness to white-box attacks that only make use of a
gradient oracle does not always imply robustness to black-
box attacks. Gradient masking makes it possible for a defense
to give a false sense of security [10] against a fully-equipped
white-box adversary as it only thwarts white-box attacks
based on the gradient oracle. This shows that there is a need
to also separately test gradient free attacks, such as black-box
attacks.

In this paper, we focus on black-box adversaries which
utilize adaptive attacks [26]. A natural question is why do
we focus on adaptive black-box type attacks? We do so for
the following reasons:
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1) State-of-the-art white-box attacks on published defenses
have been extensively studied in the literature [9]–[11].
The level of attention given to black-box attacks in de-
fense papers is significantly less. By focusing on black-
box attacks, we seek to complete the security picture.
This full security picture means that the current defenses
we analyze have not only white-box attacks (from their
own publication), but also adaptive black-box results
(as reported in this paper). Future defenses can build
upon the security concepts developed in this paper and
our experiments, when making their own analyses. This
completed security spectrum brings us to our next point.

2) By completing the security picture (with black-box at-
tacks) we allow the readers to compare defense results.
This comparison can be done because the same adver-
sarial model, dataset and attack is used for each defense.
This is completely different from adaptive white-box
attacks which may require different adversarial mod-
els and different security assumptions for each attack.
For example, in [9] to break a detector defense (The
Odds are Odd), a custom objective function must be
employed to achieve a high attack success rate in the
adaptive white-box attack. Alternatively, creating an
adaptive white-box attack on an ensemble model de-
fense (ADP [24]) is much different. The only require-
ment is to increase the number of iteration used in a
simple gradient based white-box attack, to make the
attack adaptive and effective. Although both adaptive
attacks in our example are white-box, the latter (the
adaptive white-box attack on ADP) technically only
requires being able to backpropagate on the model. As
noted in [30] it is improper to compare the robustness of
two defenses under different adversarial models.

A. BLACK-BOX ATTACK VARIATIONS
A. Pure black-box attack [10], [31]–[33]: The adversary is
only given knowledge of a training data set X0.

B. Oracle based black-box attack [26]: The attacker does
not have access to the original training dataset, but may
generate a synthetic dataset S0 similar to the training data.
The adversary can adaptively generate synthetic data and
query the defense O to obtain class labels for this data. The
synthetic dataset S0 is then used to train the synthetic model.
It is important to note the adversary does not have access to
the entire original training dataset X0.

In this paper, we propose a new version of this attack
which we call the Mixed Black-Box Attack. In this attack,
the adversary is given the entire original training dataset, the
ability to generate synthetic data and query access to the
defense to label the data. The adversary in our attack also
has multiple different adversarial generation methods φ to
choose from to create adversarial examples. In this way, the
adversary can train a synthetic model whose behavior mirrors
that of the defense more precisely. In short, the attacker
adapts the synthetic model to the defense. It is important

to note the earlier version of this attack [26] did not allow
full access to the training dataset X0 and the adversarial
generation method φ was fixed to be the Fast Gradient Sign
Method (FGSM).

Experimentally, we show that the mixed black-box attack
outperforms the original attack proposed by Papernot. Our
experiments also show the mixed black-box attack works
better on certain types of randomized defenses when com-
pared to both boundary and pure black-box attacks [10], [25],
[31]–[34]. The pseudo-code for the mixed black-box attack is
given in Algorithm 1 and explained in section II-B.

Algorithm 1 - Mixed Black-Box Attack. Oracle O (i.e., the
classifier with defense) is modeled using synthetic model M
which is trained using method T for E epochs with starting
dataset X0 ⊆ X0 and data augmentation parameter λ. The
final adversarial samples are generated from input set Xclean

using attack method φ within perturbation ε.

1: Input: O, X0, φ, λ, E and Xclean

2: S0 ← {(x,O(x)) : x ∈ X0}
3: //Train model based on initial random parameters θ
4: M(θ0)← T (M(θ), S0)
5: for e ∈ {1, .., E}:
6: //Augment the dataset with Jacobian technique
JF

7: Xe = {x+ λ · sgn(JF (x)) : x ∈ Xe−1}
8: Se ← {(x,O(x)) : x ∈ Xe} ∪ Se−1
9: //Train M on the new dataset

10: M(θe)← T (M(θe−1), Se)
11: //Generate adversarial examples with M(θE) and attack

φ
12: Output: Xadv ← {(x, φ(M(θE), ε;x, y)) : (x, y) ∈

Xclean}

C. Boundary black-box attack [35]: In this type of attack
the adversary has query access to the classifier and only
generates a single sample at a time. The main idea of the
attack is to try and find the boundaries between the class
regions using a binary search methodology and a gradient
approximation for the points located on the boundaries.

D. Score based black-box attacks In the literature, these
attacks are also called Zeroth Order Optimization based
black-box attacks [36]. The adversary adaptively queries the
defense to approximate the gradient for a given input based
on a derivative-free optimization approach. This approxi-
mated gradient allows the adversary to directly work with
the classifier of the defense. Another attack in this line is
called SimBA (Simple Black Box Attack) [37]. Unlike all the
previously mentioned attacks, this attack requires the score
vector f(x) to mount the attack, instead of merely using the
hard label.

The only type of black-box attack we do not consider in
our analysis from the ones enumerated above, is the score
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based black-box attack. Just like white-box attacks are sus-
ceptible to gradient masking, score based black-box attacks
can be neutralized by a type of masking [30]. This means
defenses can appear to be secure to score based black-box
attacks, while actually not offering true black-box security.
Furthermore, it has been noted that a decision (hard label)
based black-box attack represents a more practical adversar-
ial model [25]. Therefore, we slightly focus our scope on the
three other black-box variants.

We implement the pure black-box attack and mixed black-
box attacks. In both these types of attacks adversarial samples
are generated from the synthetic model using six differ-
ent methods, FGSM [8], BIM [38], MIM [39], PGD [27],
C&W [11] and EAD [40]. We also consider boundary black-
box attacks. Here we implement the original boundary attack,
the Hop Skip Jump Attack (HSJA) [25], as well as the newly
proposed Ray Searching Attack (RayS) [34]. In total these
attacks represent fourteen different ways to generate black-
box adversarial examples.

B. ATTACK SUCCESS RATE
For classifier C we define X (C) as the set consisting of
image label pairs (xi, yi) from the training data set X0 that
are correctly classified by C, i.e.,

X (C) = {(xi, yi) ∈ X0 : C(xi) = yi}.

We say X (C) represents the set of clean images with respect
to classifier C.

We broaden our description of a classifier C by allowing
it to output a ’do not know’ symbol ⊥. This may happen if
C computes a score vector f(x) on input x where the scores
do not clearly favor any label. Later we will also interpret
⊥ as the ’adversarial’ symbol indicating that it may be an
adversarial example.

We define the attack success rate α for classifier C with re-
spect to a particular adversarial sample generation technique
φ as

α(C, φ) = 1− 1

|X (C)|
∑

(xi,yi)∈X (C)

Pr[C(φ(xi, yi)) ∈ {yi,⊥}].

Here, the probabilities are over the coin tosses used in φ and
C. The attack success rate reflects when an adversarial ex-
ample is successful meaning that C will predict a legitimate
label, that is 6= ⊥, which is not equal to the correct class label,
that is 6= yi.

We note that φ is separately trained/modeled/generated us-
ing the information available to the black-box adversary. This
information may consist of sets X0 and set X (C), and based
on these sets a self-generated synthetic model M(θ), where
θ denotes the parameters of the synthetic model. Implicitly, φ
incorporates a perturbation parameter ε indicating into what
extent an adversarial example φ(xi, yi) may differ from the
original image xi.

The attack success rate estimates the fraction of clean
images of C for which successful adversarial examples can

be generated. Successful means C(φ(xi, yi)) 6= yi, i.e., the
adversarial example φ(xi, yi) is misclassified to an incorrect
label even though it is close to the original image xi (with
respect to perturbation parameter ε). Here we consider so-
called untargeted attacks where the adversary is only in-
terested in misclassification to some other legitimate but
wrong label. (An adversarial example for a targeted attack are
defined to be successful if the classifier labels it with a target
class label specified by the adversary.) In practice we estimate
α(C, φ) by taking a subset Xclean ⊆ X (C) and compute the
fraction of adversarial examples φ(x, y), (x, y) ∈ Xclean,
that are successful.

The above applies to the mixed-box black attack, see
Algorithm 1, as follows. By oracleO we denote the classifier
with defense to which the adversary has access. The attacker
starts with some starting dataX0 ⊆ X0, generally, we assume
the worst-case for the defender, i.e., the adversary uses all the
training data X0 = X0 as a starting point. Data augmentation
is used to recursively generate an augmented dataset Se
where queries to oracle O are used to find labels. Some
training method T (based on mathematical optimization for
machine learning) learns new parameters θe for model M
based on Se with initial parameters θe−1. The final synthetic
model M(θE) can be attacked by using a white-box attack
method φ (this is possible because the black-box adversary
knows parameters θE , hence, a gradient oracle for its syn-
thetic modelM(θE) is available). At the final step adversarial
examples are generated for Xclean and we can compute the
fraction for which these are successful – and this estimates
α(O, φ(M(θE), ε; ·)).

III. DEFENSES
The field of adversarial defenses is rapidly expanding, with
multiple defense papers released almost every month1. To
examine every proposed defense is beyond the scope of this
paper. Instead, we focus our analysis on ten recent, related
and/or popular defenses. In this section we describe the re-
lated defenses, their common security elements and why we
selected them for comparison. The related defenses we con-
sider are Barrage of Random Transforms (BaRT) [22], The
Odds are Odd (Odds) [23], Ensemble Diversity (ADP) [24],
Madry’s Adversarial Training (Madry) [27], Multi-model-
based Defense (Mul-Def) [21], Countering Adversarial Im-
ages using Input Transformations (Guo) [20], Ensemble
Adversarial Training: Attacks and Defenses (Tramer) [14],
Mixed Architectures (Liu) [33], Mitigating adversarial ef-
fects through randomization (Xie) [18], Thresholding Net-
works (a basic proof of concept defense developed in this pa-
per) and Barrier Zones (BARZ), the main technique proposed
in this paper. In general, adversarial defenses can be divided
based on several underlying defense mechanisms. We note
this type of division is common in other defense papers as
well [41]. While the definitions for categorization we provide

1https://nicholas.carlini.com/writing/2019/
all-adversarial-example-papers.html
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here are by no means absolute, they give us a way to better
understand and analyze the field.

1) Multiple models - The defense uses multiple classifiers
for prediction. The classifier outputs may be combined
through averaging (i.e. ADP), randomly picking one
classifier from a selection (Mul-Def) or through major-
ity voting (Mixed Architecture).

2) Image transformations -The defense applies image
transformations before classification. In some cases, the
transformation may be randomized (Xie and BaRT) or
fixed (Guo).

3) Adversarial training - The classifier is trained to cor-
rectly recognize adversarial examples with their correct
label. Madry, Mul-Def and Tramer all use adversarial
training.

4) Adversarial detection - The defense outputs a null
label if the sample is considered to be adversarially
manipulated. Odds employs an adversarial detection
mechanism, as does the vanilla thresholding network we
consider as a proof of concept defense in this paper.

5) Randomization - The defense employs some form of
randomization during prediction that is not known a
priori to the attacker. BaRT and Xie both apply random
image transformations at run time to the input.

A. BARRAGE OF RANDOM TRANSFORMS (BART)
Barrage of Random Transforms (BaRT) by [22] is a defense
that applies a set of image transformations i1, ..ir to the
input x before classification. There are ten types of im-
age transformations that BaRT employs: JPEG compression,
image swirling, noise injection, Fourier transform perturba-
tions, zooming, color space changes, histogram equalization,
grayscale transformations and denoising operations. For each
input x, the number of transformations, the order of the
transformations and the parameters in the transformations are
randomly selected at run time.

Why we selected it: As the defense we propose (BARZ)
also uses image transformations, BaRT is a natural candidate
to compare to. In building the defense, BaRT trains a single
network on multiple image transformations. In contrast, our
defense trains multiple networks, each on its own smaller
set of image transformations. Comparing these two different
ways of building image transformation based defenses is of
interest.

B. THE ODDS ARE ODD (ODDS)
The Odds are Odd was first introduced in [23] as a statistical
test for detecting adversarial samples. The concept behind
the test is based on a simple observation: clean samples and
adversarial samples have different values in the logits layer
l(·). Here we define the logits layer as the layer before the
soft-max layer. When given an input x, the test works by
creating multiple copies of the input each with random noise
added x̂1, ..., x̂p. The statistical test uses l(x̂1), .., l(x̂p)) as
input to distinguish between adversarial and clean examples.

Why we selected it: In the black-box setting adversarial
detection is one possible way to make the defense stronger as
the attacker has to produce a wrong class label and avoid the
defense marking the input as adversarial (⊥). In the defense
proposed in this paper (BARZ) we also employ detection by
using a threshold voting method with multiple classifiers. As
security through detection is precisely what Odds attempt
to achieve, it makes sense to compare statistical detection
methods to voting based detection defenses such as BARZ.

C. IMPROVING ADVERSARIAL ROBUSTNESS VIA
PROMOTING ENSEMBLE DIVERSITY (ADP)
Using multiple classifier in a defense is a straight-forward
concept based on the notion that it is more difficult to break
an ensemble of classifiers as opposed to a single one. In [24]
they further this notion by specifically training an ensemble
of classifiers to avoid the case where the majority of classi-
fiers simultaneously misclassify an adversarial example. In
this defense, security is achieved during training in which an
adaptive diversity promoting (ADP) regularizer is used. The
ADP regularizer pushes the non-maximal predictions of each
ensemble classifier to be mutually orthogonal.

Why we selected it: ADP uses an ensemble of classi-
fiers without image transformations or adversarial training.
BARZ on the other hand, uses multiple classifiers with image
transformations. If it were possible to achieve black-box
robustness in an ensemble without image transformations
(e.g. with only special training like in ADP) this would negate
the need for special image transformations in a black-box
defense. Therefore, testing ADP and comparing it to BARZ
has important black-box security implications.

D. MADRY’S ADVERSARIAL TRAINING (MADRY)
Madry’s adversarial training [27] is a widely used defense
with clear security objectives. As CNNs misclassify adver-
sarial examples, the authors in [27] proposed generating the
adversarial examples and subsequently learning to classify
them correctly during training. In general adversarial training
can be broken down into two steps. In the first step, for a
given clean dataset and classifier, the defender uses a white-
box adversarial attack φ to derive an adversarial dataset. In
the second step, the classifier is trained with the adversarial
examples and the original clean labels. These two steps are
repeated during training multiple times to create a robust
adversarial trained classifier.

Why we selected it: Madry’s adversarial training is one of
the most commonly accepted adversarial machine learning
defenses due to its intuitive design and robust results. While
the security principles that Madry’s adversarial training are
based on do not directly overlap with BARZ, it nevertheless
is a defense standard to compare to.

E. MULTI-MODEL-BASED DEFENSE (MUL-DEF)
In [21] they proposed a defense against white-box attacks
based on multiple networks, each with the same architecture.
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The authors in [21] developed their defense based on a spe-
cialized training technique. They first start with a classifier
C1 that has been trained on the clean dataset X . A white-
box attack φC1

is done on C1 to generate a set of adversarial
examples S1. A new training set is formed from the original
dataset and adversarial examples: X ∪ S1. This new set is
used to train the next classifier C2. This process is repeated
such that classifier Cj is trained on X ∪ S1 ∪ ... ∪ Sj−1.
During prediction the final output is randomly selected from
classifiers C2, .., Cm where m is the number of specially
trained classifiers in the Mul-Def.

Why we selected it: Mul-Def has overlapping security
concepts with BARZ. Both use multiple models in the de-
fense and both try to create distinct classifiers (Mul-Def
through special training and BARZ through training on trans-
formed data). In the randomized form of BARZ, a random
subset of model outputs is used similar to Mul-Def. The
main difference between the two defenses is that Mul-Def
does not employ any voting among the models and does not
implement any adversarial detection. If an ensemble defense
could avoid having to implement detection, this would clearly
boost the clean accuracy of the defense. This is due to the
fact imperfect detection methods mark some clean samples
as adversarial (false positives). Due to their similar security
concepts, it is logical to compare Mul-Def to BARZ.

F. COUNTERING ADVERSARIAL IMAGES USING INPUT
TRANSFORMATIONS (GUO)
In [20], the designer selects a set of possible image transfor-
mations for a single classifier and keeps the selection of the
chosen image transformations secret. The main security idea
in this defense (Guo) is that the image transformations will
distort the adversarial noise enough such that it is no longer
causes the classifier to misclassify the adversarial example.

Why we selected it: While we do not directly test the
original Guo image transformations, the security concepts
behind the Guo defense are the same as a single network in
BARZ. Essentially, the security principles in the Guo defense
(single network and image transformations) are a special case
of BARZ when the number of classifiers m = 1. Since Guo
defense has already been proposed, it would be redundant
to propose BARZ, if BARZ-1 (i.e. the Guo defense) already
offered substantial security. Therefore, it is necessary to
experiment with the Guo defense.

G. ENSEMBLE ADVERSARIAL TRAINING: ATTACKS
AND DEFENSES (TRAMER)
The authors in [14] proposes another type of adversarial
training method. In this defense, adversarial examples are
generated by attacking multiple networks with multiple dif-
ferent attack methods. After this the designer trains a new
network with the generated adversarial examples. The au-
thors in [14] argued that this adversarial training can make
the adversarially trained network more robust against (pure)
black-box attacks because it is trained with adversarial exam-
ples from different sources (i.e., pre-trained networks).

Why we selected it: The Tramer defense has natural
security concepts parallel to BARZ. Both defenses rely on
multiple models. In BARZ these models are used for consen-
sus voting, in the Tramer defense they are indirectly relied on
(for generating new adversarial examples). Both defenses are
also designed with black-box adversaries in mind. Hence, the
Tramer defense is a natural choice to test when considering
black-box threat models.

H. MIXED ARCHITECTURE (LIU)

In [33], the authors studied the transferability between CNNs
with different architectures for the ImageNet dataset. They
found that adversarial samples do not always transfer be-
tween different architectures, i.e. adversarial samples mis-
classified byC1 are not always misclassified byC2. Based on
this study one could propose a defense made up of different
CNNS C1, .., Cm each with a different structure.

Why we selected it: While not directly proposed in [33],
the question of the viability of a mixed architecture defense
arises from the results of [33]. As BARZ uses multiple
models, would it make a significant difference in robustness
if the architectures of the models are mixed? By testing
the mixed architecture defense (Liu) we try and empirically
answer this question.

I. MITIGATING ADVERSARIAL EFFECTS THROUGH
RANDOMIZATION (XIE)

In [18] a defense is developed using a single classifier where
a random image transformation ir is applied to the input
x at run time. Unlike BaRT or BARZ, this method does
not require retraining the classifier on the different image
transformations i1, ...ip.

Why we selected it: The Xie defense uses image transfor-
mations just like BARZ. Hence this defense presents a unique
competing concept: achieve security through randomization
without costly retraining. Whether gaining this robustness
without retraining is possible under a black-box adversary is
why we study the Xie defense in this paper.

J. THRESHOLDING NETWORK (VANILLAT)

The thresholding network is a simple defense demonstrated
in this paper to highlight the challenging nature of creating
robust barrier zones. The threshold network is a detection
type of defense that uses a vanilla classifier C and threshold
t. If the highest probability p from classifier C falls below
threshold t, the sample is marked as adversarial: ⊥.

Why we selected it: When considering barrier zones de-
fenses, the first intuition might be that simply thresholding
a vanilla classifier could work. That would mean robustness
could be achieved without multiple classifiers or image trans-
formations. We develop the thersholding network defense to
empirical demonstrate that a single classifier barrier zone is
not sufficient.
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IV. BARRIER ZONE DEFENSE (BARZ)
With so many different kinds of defenses, a natural question
is why do we propose another? In short, the answer is because
no current defense we analyze performs well against ALL
types of black-box attacks and offers a flexible trade-off
between security and clean accuracy. For example, adver-
sarially trained networks like Madry perform poorly against
pure black-box attacks (less than 65% robust accuracy on
CIFAR-10 [27]). Randomized defenses like Xie and Mul-
Def work well against boundary attacks but fail against mixed
black-box attacks which can adapt to the randomization (we
show results for this in section VI). If we want to increase
their security, it is not immediately clear how much clean
accuracy will be impacted. Likewise, if we want greater clean
accuracy, without completely abandoning the defense, it is
not obvious how this can be accomplished. In BARZ by
adding more networks this trade-off between security and
clean accuracy is transparent. BARZ is also one of the only
defenses that performs well across all types of black-box
attacks (pure, mixed and boundary).

We present full experimental results in section VI to sup-
port these claims and give an individual analysis of every de-
fense with respect to black-box attacks in the appendix. Our
main focus is to create a defense where the other proposed
methods fall short. We strive to create a high fidelity defense
(BARZ) that provides flexibility between security and clean
accuracy.

A. SECURITY PRINCIPLES OF BARRIER ZONES
The BARZ defense is based on the concept of barrier zones.
Barrier zones are the regions in between classes where if an
input falls in this region, it is marked as adversarial. For any
new defense the first question is why is it effective, or in this
case why do barrier zones provide security? Here we give the
mathematical intuition behind this concept.

Suppose we have m classifiers Cj with corresponding
attack success rates αj = α(Cj , θj), where adversarial
sample generation technique θj is specific to classifier Cj .
Let us construct a new classifier C which uses each Cj to
predict a label and outputs the majority decision. If more
than one label has the same majority vote, then C outputs
⊥ representing that it does not know how to assign a label.
To output a legitimate label, C needs to have a clear majority
vote which is not shared by multiple labels.

Consider an adversarial sample generation technique φ
tuned to C. Let vote Vk be defined as

Vk(xi, yi) = |{1 ≤ j ≤ m : Cj(φ(xi, yi)) = k}|
(assuming deterministic algorithms Cj and φ for simplicity).
Only if Vyi > Vk for all labels k 6= yi, classifier C will
output the correct label yi. The adversarial example φ(xi, yi)
is successful if a label different from yi and⊥ is output. That
is, there exists a label ŷ 6∈ {yi,⊥} such that Vŷ > Vk for all
legitimate labels k 6= ŷ.

This shows that the difference

A(yi, k) = Vyi − Vk

represents the ’advantage’ of choosing yi over k in classifier
C. By using notation A(., .) and translating our character-
ization of successful adversarial examples, we have attack
success rate α = α(C, φ) equal to

α =

∣∣∣∣{ (xi, yi) ∈ X (C) :
∃ŷ∈K\{yi,⊥} ∀k∈K\{ŷ} A(ŷ, k) > 0

}∣∣∣∣
|X (C)|

, (1)

where K is the set of all legitimate class labels together with
⊥.

This establishes the conditions for a successful attack on
multiple standard classifiers when the output is determined
by the majority. We now demonstrate how two security
principles in BARZ increase the difficulty of the attack
conditions.

Absolute Consensus Majority Voting: Instead of using
simple majority voting, in BARZ we use absolute consensus
majority voting. This means if all classifiers do not agree
on the same label, the sample is interpreted as adversar-
ial/suspicious, labeled ⊥, and the attack fails. We can see
that this specifically changes the threshold > 0 in (1) to ≥ m
for a successful attack. Note that while the threshold is now
higher, the base conditions for a successful attack, advantages
A(ŷ, k), did not change in value. Our next security principle
deals with the base conditions.

Input Transformations: In BARZ each classifier Cj im-
plements its own unique secret input linear transformation
ψj . It is important to note that in this subsection we discuss
the secret transformations φj abstractly without designating
the specific type of transformation. Theoretically, this allows
us to develop the mathematical formulation of the attack
success rate of the adversary without assuming the type of
transformation. However, for experimentation and defense
implementation the image transformation is important and
we discuss its choice further in Section IV-B. Once the secret
input linear transformation ψj is applied, a classifier C ′j is
executed:

Cj = C ′j ◦ ψj .

The reason for individual transformations is to further in-
crease the difficulty in crafting adversarial example φ(xi, yi).
It has already been shown in the literature that vanilla classi-
fiers have high transferability [33]. Therefore, using standard
vanilla classifiers without transformations (for all k, ψk is the
identity function), does not significantly improve the security
for the following reason: If

C ′1(φ(xi, yi)) = ŷ 6= yi,

then due to transferability there is a high probability that all
standard vanilla classifiers C ′k output the same wrong label
ŷ. This implies that the absolute consensus majority voting
with vanilla classifiers yields a high attack success rate α. See
necessary condition in (1) with absolute consensus majority
vote ≥ m.
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FIGURE 3: Decision regions with and without barrier zones.

We can rewrite φ(xi, yi) as the corresponding clean image
and noise: φ(xi, yi) = xi + ηi. Under this formulation we
can reformulate (by using linearity of ψj) the base condition
A(ŷ, k) to

|{1 ≤ j ≤ m : C ′j(φ(xi, yi)) = ŷ}|
−|{1 ≤ j ≤ m : C ′j(φ(xi, yi)) = k}|

= |{1 ≤ j ≤ m : C ′j(ψj(xi) + ψj(ηi)) = ŷ}|
−|{1 ≤ j ≤ m : C ′j(ψj(xi) + ψj(ηi)) = k}| (2)

There are several important takeaways from (2). While the
transformation ψj changes between classifiers, the noise
the adversary crafts ηi does not change. In essence for a
single sample xi the adversary must generate noise ηi that is
invariant to the set of transformations ψ1, .., ψm. Specifically
the condition for a successful attack is now: C ′1(ψ1(xi) +
ψ1(ηi)) = ŷ, . . . , C ′m(ψm(xi) + ψm(ηi)) = ŷ for some
ŷ 6∈ {yi,⊥}. That is, noise ψj(ηi) must fool classifier Cj , for
all j simultaneously, while the adversary can only construct
a single noise value ηi.

When we combine (2) with absolute consensus majority
voting our final attack success rate for the adversary can be
concisely written as:∣∣∣∣{ (xi, yi) ∈ X (C) :

∃ŷ∈K\{yi,⊥} ∀mj=1 C
′
j(ψj(xi) + ψj(ηi)) = ŷ

}∣∣∣∣
|X (C)|

.

In the original multi-classifier attack formulation (1) only a
majority of the classifiers had to miss classify the adversarial
example φ(xi, yi) to a label ŷ such that A(ŷ, k) > 0 for
any k 6= ŷ. Under the BARZ defense it is clear the new
conditions requires ALL classifiers and each transformation
to be bypassed.

B. REALIZING BARRIER ZONES
In practice barrier zones forces the adversary to add noise η
greater than a certain magnitude in order to overcome the
barrier zone. Because an attack fails if the noise becomes
visual perceptible to humans, the adversary is limited in
terms of the magnitude of η. In many cases this means the
adversary may not be able to overcome the barrier zone and
therefore cannot fool the classifier. Barrier zones are shown
both in a theoretical diagram and with actual experimental
results in Figure 3. The natural question is how can barrier
zones be implemented in classifiers? In this subsection we

discuss different techniques that can be used to create barrier
zones.

Multiple Classifiers: Barrier zones can be created through
the use of multiple classifiers. A naïve approach to this
method would be to simply use CNNs with different ar-
chitectures. However, we show that merely using different
architectures does not yield security. Specifically, we test
such a defense in our results by using one VGG16 and
one ResNet56 with majority voting (we denote this as the
Liu defense). This has also been shown in the literature
in [33]. Other examples of architectural defenses not yielding
security include ADP and Mul-Def (which we test in this
paper). Instead to break transferability between networks we
introduce secret image transformations for each classifier.
Our defense composed of multiple classifiers (each with
their own transformations) is depicted in Figure 4. Each
CNN has two simple unique secret image transformations as
shown in Figure 4. The first is a fixed linear transformation
c(x) = Ax+ b, where A is a matrix and b is a vector.

After the linear transformation a resizing operation i is
applied to the image before it is fed into the CNN. The CNN
corresponding to c and i is trained on clean data {i(c(x))}.
Multiple CNNs are used, each with their own resizing opera-
tion and A and b components as shown in Figure 4.

From [22] we know adversarial examples are sensitive to
image transformations which either distort the value of the
pixels in the image or change the original spatial location
of the pixels. It is important to note that in this paper we
experimentally established that image resizing and linear
transformations can reduce transferability. However, there
may be other image transformations that can also accomplish
this goal.

Image Transformation Defenses: A few simple questions
arise when dealing with image transformations in security.
For example, can only one network with image transfor-
mations be used without retraining? We test this concept
using the defense by Xie (and we show it performs worse
than BARZ under the mixed black-box attack). Can only
a single network with image transformations and retraining
work? In essence we test a single network, with one set
of transformations (Guo) and a single network retrained
on multiple random transformations (BaRT). Both of these
defenses perform worse than BARZ for the mixed black-box
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attack.
Another valid question is can only detection of adversarial

samples be employed? We test this hypothesis in the follow-
ing way, we use a vanilla network and a confidence threshold,
i.e. any sample below a certain confidence score is marked as
adversarial. We also test the Odds defense which employs
its own adversarial detection method. In section VI we show
that neither thresholding nor the Odds defense are able to
outperform BARZ.

It is important to note that it may be possible to fur-
ther combine other defense techniques such as adversarial
training, randomizing some of the image transformations
or any number of other techniques. However, the goal of
this paper is not to exhaustively test every possible defense
combination. The goal is not to test every defense in the
literature either. The objective of this work is to provide a
defense framework against black-box adversaries that offers
clear trade-offs between clean accuracy and security.

C. BARRIER ZONE GRAPHS
In Figure 3 we show barrier zone graphs for various defenses
for a single image from CIFAR-10. These graphs are based
on the decision region graphs originally presented in [33]. In
our graphs, each point on the 2D grid corresponds to the class
label of an image I ′. Green represents that I ′ has been classi-
fied correctly, while red and blue regions represent incorrect
class labels. Gray represents that the null (adversarial) class
label has been assigned. The image I ′ is generated from the
original image I:

I ′ = I + x · g + y · r. (3)

Here g represents the gradient of the loss function with
respect to I . In (3) r represents a normalized random matrix
that is orthogonal to I (note g is also normalized). Variables,
x and y represent the magnitude of each matrix which is
determined based on the coordinates in the 2D graph.

In essence the graph can be interpreted in the following
sense: The origin is classification of the original image with-
out adversarial perturbations or random noise added. As we
move along the x-axis in the positive direction, the magnitude
of the gradient matrix x increases. Moving positively along
only the x-axis is equivalent to the FGSM attack, where
the image is modified by adding the gradient of the loss
function (with respect to the input). If we move along the
y-axis only, the magnitude of the random noise matrix y
increases. This is equivalent to adding random noise to the
image. Moving along the positive x-axis and any direction in
the y-axis means we are adding an adversarial perturbation
and a random noise to the original image I . The further from
the origin, the greater the magnitude of x and y and hence the
larger the distortion that is applied to create I ′.

In the case where a defense uses multiple networks m,
each network i will have a different gradient matrix gi.
To compensate for this, we average the individual gradient
matrices together before normalizing to get g. It is important

to note that while the graphs shown in Figure 3 give exper-
imental proof of the concept of barrier zones, they cannot
be used to attack BARZ defenses in practice. When creating
the graphs, we have knowledge of the individual gradient
matrices gi for each individual network i. With a black-box
adversary only the final output of the defense,O(x) is known.
Individual network outputs are not obtainable. Hence it is not
possible to precisely estimate the individual gradients gi to
construct a barrier zone graph under a black-box adversarial
model to the best of our knowledge.

𝑀𝑎𝑗𝑜𝑟𝑖𝑡𝑦
𝑉𝑜𝑡𝑖𝑛𝑔

𝑥 𝑐(𝑥)

𝐶𝑁𝑁 𝑙

𝑐1(𝑥) 𝑐1 𝑖1 𝑥 𝐶𝑁𝑁1 𝑙1

𝑐𝑚(𝑥) 𝑐𝑚 𝑖𝑚 𝑥 𝐶𝑁𝑁𝑚 𝑙𝑚

𝑥 𝑙/⊥

𝑖 𝑐 𝑥

FIGURE 4: Top picture: design of a single network with
transformations in BARZ. Bottom picture: the complete
BARZ defense comprised of multiple networks. Each net-
work has its own set of transformation. The final output is
decided through absolute consensus majority voting. If an
absolute consensus is not reached, then the sample is marked
as adversarial.

V. MEASURING DEFENSE PERFORMANCE
In general, when building a defense, there are two primary
aspects to consider. The first aspect is security. In the field
of adversarial machine learning, security is represented by
robust accuracy. When building a defense, the second aspect
to consider is the cost. In adversarial machine learning, this
cost usually comes in the form of a drop in clean accuracy,
γ. In the ideal case, security would be free, i.e., γ = 0.
In adversarial machine learning, it is well documented that
robustness (security) is not free. There is an inherent trade-
off between clean accuracy and robustness [42], [43]. Under
these circumstances the natural question is, if a cost is always
incurred how do we judge a defense?

In this paper, we answer this question by using a metric
that measures this trade-off by taking into account both the
robustness and clean accuracy. We introduce the δ-metric to
properly understand the combined effect of:

1) A drop γ in clean accuracy from an original clean
accuracy p to clean accuracy

pd = p− γ (4)

for the defense. Here, clean accuracy p corresponds to
a vanilla scheme without defense strategy in a non-
malicious environment. Similarly, clean accuracy pd
represents the accuracy for the defense measured in the
non-malicious environment without adversaries. (We
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take "clean" to have the additional meaning of being in
a non-malicious environment.)

2) The attacker’s success rate α against the defense. If the
defense recognizes an adversarial manipulated image as
an adversarial example, then it outputs the adversarial
label ⊥ and the attack is not considered successful.
When defining α, we restrict ourselves to adversarial
examples for those images which the defense (in their
original non-attacked form) properly classifies by their
correct labels. The attacker’s success rate is then defined
as the fraction of adversarial examples that manipulate
these images in such a way that the defense produces
labels different from the correct labels and different
from the adversarial label ⊥. For completeness, litera-
ture defines the robust accuracy or defense success rate
as 1 − α. (We notice that most defenses cannot recog-
nize an adversarial manipulated image as an adversarial
example and do not have an adversarial label as possible
output.)

Proper classification by the defense in the presence of
adversaries is one of the following: An image (possibly
after adversarial manipulation) is recognized by its correct
label (implying the attack did not work). Or, an adversarial
manipulated image is given the adversarial label ⊥ (if the
defense offers this possibility).

The probability of proper/accurate classification by the de-
fense in the presence of adversaries is equal to (p−γ)(1−α)
(since the defense properly labels a fraction p − γ if no
adversary is present and out of these images a fraction α
is successfully attacked if an adversary is present). In other
words (p − γ)(1 − α) is the accuracy of the defense in the
presence of adversaries (malicious environment). Going from
a non-malicious environment without defense to a malicious
environment with defense gives a drop in accuracy of

δ = p− (p− γ)(1− α) = γ + (p− γ)α. (5)

δ can be used to measure the effectiveness of different de-
fenses, the smaller the better. If two defenses offer roughly
the same δ, then it makes sense to consider their (γ, α) pairs
and choose the defense that either has the smaller α or the
smaller γ.

From a pure ML perspective, in order for a defense to
perform well in a non-malicious environment, we want γ
very small or, equivalently, pd close to p. From a pure security
perspective, in order for a defense to perform well in a
malicious environment, we want δ to be small. Therefore,
for properly comparing defenses we focus on tuples (δ =
γ + (p− γ)α, pd = p− γ), where α corresponds to the best
attacker’s success rate across the best known attacks from
literature. Notice that the vanilla scheme can be considered in
a malicious environment as well and this will correspond to
some (δvan, pd = p). Clearly defenses that result in δ ≥ δvan
do not improve over implementing no defense at all (which
is the plain vanilla scheme).

In the ideal case δ = 0 when the attack always fails
(α = 0) and there is no cost in using the defense (γ = 0).

Due to adversarial attacks, α > 0 and, hence, this condition
does not occur. Therefore, we look for a defense with the
smallest δ, e.g. a defense that has both a low α and low
γ. If two defenses have similar δ values, we may simply
consider the one with the better clean accuracy, which is
precisely what we do in this paper. It is important to note
the δ metric is simply one way to understand the trade-off
between robustness and clean accuracy. It is by no means
the definitive or only way to do so. In this paper, we focus
on measuring defenses using the δ metric due to its concise
ability to capture both sets of information, α (security) and
γ (cost). For those interested in other metrics, we provide all
the accuracy measurements separately in graphs and tables
in the appendix for all attacks and defenses covered in this
paper.

VI. EXPERIMENTAL RESULTS
In this section we provide experimental results to show
the effectiveness of the BARZ defense. We also show the
improvement our mixed black-box attack gives. We exper-
iment with two popular datasets, Fashion-MNIST [44] and
CIFAR-10 [45]. Unlike other reported results in the literature,
for every defense, we construct it using the same network
architecture whenever possible. We apply the defense to
the same dataset and we run every defense under the same
set of attacks. This allows us to provide an unprecedented
comparison of adaptive black-box attack results.

Vanilla

VanillaT-0.7
VanillaT-0.95

VanillaT-0.99

Liu
ADP

Xie

Madry

TramerMulDef-4

MulDef-8

Guo

BARZ-2

BARZ-4

BARZ-8

BARZ-8R2

BARZ-8R6
Odds

BaRT-1

BaRT-4

BaRT-6

BaRT-8

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
le

an
 A

cc
u

ra
cy

Delta Value

VanillaVanillaT-0.7

VanillaT-0.95

VanillaT-0.99

Liu

ADP

Xie
Madry

Tramer

MulDef-4

MulDef-8

Guo

BARZ-2

BARZ-4 BARZ-8

BARZ-8R2

BARZ-8R6

Odds

BaRT-1

BaRT-4

BaRT-7

BaRT-10

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8

C
le

an
 A

cc
u

ra
cy

Delta Value

Fashion-MNIST Mixed Black-Box

CIFAR-10 Mixed Black-Box

FIGURE 5: The δ metric vs clean accuracy pd = p − γ for
the mixed black-box. The BARZ results are shown in green
and the vanilla result is shown in gray.

A. THE MIXED BLACK-BOX ATTACK
As stated in Section III, our mixed black-box attack is an ex-
pansion of the Papernot attack. The original paper [26] exper-
imented with only a single method for generating adversarial
samples, the fast gradient sign method (FGSM). We compare
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FIGURE 6: Robust accuracies for the untargeted mixed
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untargeted boundary attack (bottom). Note if the defense is
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robust accuracy against the attack. That is the attack works
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FIGURE 7: The attack success rate of the original Papernot
attack and the new mixed black-box attack proposed in this
paper. Further comparison and full descriptions to reproduce
the experiments are given in the appendix.

results for the Papernot attack and mixed black-box attack
in Figure 7 for the ‖l‖∞ norm with maximum perturbation
ε = 0.05 for CIFAR-10 and ε = 0.1 for Fashion-MNIST. The
attack success rate is measured using 1000 samples from the
test set. Overall, by providing the adversary with more data,
the untargeted attack success rate on a vanilla network can
increase by 49.4% for CIFAR-10 and by 31.1% for Fashion-
MNIST. More experimental details for these results are given
in appendix. Some may argue against the practicality of an
adversary that has training data access. However, as a defense
designer we want to consider the strongest possible hard label
black-box adversary. Hence, the mixed black-box attack is
clearly necessary for defense validation.

B. PURE BLACK-BOX AND BOUNDARY ATTACKS
In addition to the mixed black-box attack, we also consider
the pure black-box and boundary attack. Each of these attacks
can be further categorized based on how the adversarial
samples are generated. For both the pure and mixed black-
box attack (proposed in this paper) we use six different ad-
versarial generation methods (FGSM, IFGSM, PGD, MIM,
C&W and EAD). For pure black-box attacks we use the
same set of generations methods (but the model used in
conjunction with the attack is not adaptively trained). For the
boundary attacks, we consider HSJA and RayS. In total this
represents four types of black-box attacks and 14 different
ways adversarial samples can be generated. For CIFAR-10,
the maximum perturbation we allow is ε = 0.05 and for
Fashion-MNIST the maximum perturbation is ε = 0.1. For
RayS we allow 10,000 queries per sample and for HSJA
we use a variable query style attack (which we explain
in detail in the appendix). Note in Table 2 some attacks
are not applicable to certain defenses. This occurs only for
boundary attacks for 2 defenses (BaRT and Odds). This is
due to computational complexity issues of non-parallelizable
prediction for the run time of the boundary attacks. We fully
explain this in the appendix along with precise attack details
for all the attacks.

C. DEFENSES
We experiment with 11 defenses (BARZ, vanilla thresh-
olding, Guo, Liu, ADP, Xie, Madry, Tramer, Mul-Def,
BaRT and Odds). In terms of network architecture, we use
ResNet56 [46] for the networks in the CIFAR-10 defenses
and VGG16 [47] for the networks in the Fashion-MNIST
defenses. It is important to note that the results reported
here do not always match the literature results identically.
This is due to difference in architectures and datasets. For
example, the authors of BaRT never published a CIFAR-10
version of their defense, so our BaRT implementation will
have different accuracy than what they report for ImageNet.
Likewise, Madry’s original CIFAR-10 defense was trained
using a Wide ResNet where as we use ResNet56V2. We
use the same base architecture for every defense (whenever
possible) and the same dataset to make our comparisons
as valid as possible. Due to the limited space, we cannot
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TABLE 2: δ values and clean accuracies for all the defenses under different attacks. The best δ for every category is shown
in bold. Note robust accuracy for every type of attack (e.g. HSJA, RayS, mixed black-box MIM, pure black-box PGD etc. are
given in the appendix.

CIFAR-10 Fashion-MNIST
δ Pure δ Mixed δ Boundary Clean Acc δ Pure δ Mixed δ Boundary Clean Acc

Vanilla 0.5168 0.6875 0.9278 0.9278 Vanilla 0.5960 0.8317 0.9356 0.9356
VanillaT-0.7 0.3973 0.4551 0.9278 0.9038 VanillaT-0.7 0.5525 0.7768 0.9356 0.9232
VanillaT-0.95 0.2741 0.2732 0.9278 0.8468 VanillaT-0.95 0.4789 0.6644 0.9356 0.8920
VanillaT-0.99 0.2534 0.2250 0.9278 0.7879 VanillaT-0.99 0.4105 0.5127 0.9356 0.8442
Liu 0.3385 0.3922 0.9278 0.8528 Liu 0.3333 0.4376 0.9356 0.8990
ADP 0.4799 0.7892 0.9278 0.9430 ADP 0.6036 0.8550 0.9356 0.9486
Xie 0.6396 0.7427 0.3344 0.7064 Xie 0.6205 0.7805 0.4213 0.8164
Madry 0.5140 0.3507 0.5366 0.7524 Madry 0.4080 0.5417 0.1623 0.8055
Tramer 0.4667 0.5510 0.9278 0.8524 Tramer 0.4320 0.6136 0.9356 0.9361
MulDef-4 0.5080 0.6030 0.3182 0.8709 MulDef-4 0.4372 0.6071 0.3161 0.9386
MulDef-8 0.5009 0.5881 0.2947 0.8556 MulDef-8 0.4720 0.5825 0.2801 0.9365
Guo 0.4805 0.5232 0.9278 0.9092 Guo 0.3852 0.5963 0.9356 0.9023
BARZ-2 0.2821 0.2881 0.9278 0.8507 BARZ-2 0.2603 0.3414 0.8502 0.8537
BARZ-4 0.2153 0.2120 0.7981 0.8106 BARZ-4 0.2514 0.2653 0.5008 0.8204
BARZ-8 0.2258 0.2273 0.6328 0.7565 BARZ-8 0.2363 0.2308 0.2433 0.7779
BARZ-8R2 0.2771 0.3501 0.2822 0.8495 BARZ-8R2 0.2846 0.3070 0.1606 0.8611
BARZ-8R6 0.2226 0.2303 0.2521 0.7767 BARZ-8R6 0.2505 0.2442 0.2070 0.7920
Odds 0.4565 0.5151 NA 0.7141 Odds 0.6405 0.8337 NA 0.7547
BaRT-1 0.4238 0.5867 NA 0.8571 BaRT-1 0.4538 0.6292 NA 0.9039
BaRT-4 0.5213 0.5950 NA 0.7513 BaRT-4 0.5010 0.6171 NA 0.8294
BaRT-7 0.6368 0.6673 NA 0.6114 BaRT-6 0.5432 0.6464 NA 0.7817
BaRT-10 0.7491 0.7418 NA 0.4869 BaRT-8 0.6120 0.6748 NA 0.7144
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FIGURE 8: The δ metric vs clean accuracy pd = p − γ for
the pure black-box. The BARZ results are shown in green
and the vanilla result is shown in gray.

describe the full implementation details of every defense
here. We encourage the reader to examine the appendix for
further details if interested.

BARZ and Thresholding Defenses. In this paper we ex-
periment with BARZ and also a naive defense which we

call vanilla thresholding. A common misconception is that
by merely thresholding the output of a vanilla classifier
(i.e. marking a sample as adversarial if the network is not
confident in its prediction) then all black-box attacks can be
mitigated. We provide results for the 70%, 95% and 99%
thresholding network to show this is simply not the case.

For BARZ, we realize the barrier zones through image
transformations. Specifically, each network has an image
transformation selected from mappings c(x) = Ax + b.
We explain how we chose the randomized A and b based
on the dataset in the appendix. We can consider an image
transformation cj(x) as an extra randomly fixed layer added
to the layers which form the j-th CNN. We tested three of
these designs: One with 8 networks (BARZ-8) each using
a different image resizing operation from 32 to 32, 40, 48,
64, 72, 80, 96, 104. The second with 4 networks (BARZ-4)
being the subset of the 8 networks that use image resizing
operations from 32 to 32, 48, 72, 96. The third with 2
networks (BARZ-2) being a subset of the 8 networks that use
image resizing operations from 32 to 32 and 104.

We also consider a randomized version of BARZ which we
denote as BARZ-xRy. In this version, a subset of y networks
(selected from x networks) are used to do the absolute
majority vote on a sample. For instances, in BARZ-8R2 every
time a sample is submitted, two of the eight networks are
randomly selected to classify the sample.

D. EXPERIMENTAL ANALYSIS
The main results for our paper are given in Table 2 for
CIFAR-10 and Fashion-MNIST and the robust accuracy is
visually shown in Figure 6. We compute the δ metric for
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every defense based on the attack that the defense is weakest
to (i.e. has the lowest robust accuracy). For example, if the
BARZ-8 defense has a robust accuracy of 60% against RayS
(60% of the adversarial samples do not fool the defense) and
a robust accuracy of 39% against HSJA, then HSJA is used to
compute the BARZ-8 boundary δ metric. Visually the results
for the worst case δ metric for the pure black-box attack,
mixed black-box attack and boundary attack adversaries are
given in Figures 5, 8 and 2.

In terms of performance, our proposed defense (BARZ)
outperforms every other defense for both CIFAR-10 and
Fashion-MNIST. On CIFAR-10, BARZ-4 gives the best
tradeoff between security and accuracy for δ mixed and δ
pure, and BARZ-8 has the best robust accuracy (92.6% for
mixed and 92.8% for pure). For boundary attacks BARZ-
8R6 gives the best trade-off for CIFAR-10 as well as the
best robust accuracy (87%). Likewise, for Fashion-MNIST
BARZ-8 has the lowest δ for the mixed and pure black-
box attacks. For Fashion-MNIST BARZ-8 also has the best
pure and mixed robust accuracy with 90.6% and 89.9%
respectively. For the boundary attacks for Fashion-MNIST,
we can see BARZ-8R2 gives the best trade-off but Madry
gives slightly better robust accuracy (96% for Madry versus
92% for BARZ-8R2). For those interested in the conventional
robust accuracy measurement, we give the overall result in
Figure 1. This figure shows the minimum robust accuracy
across all black-box attacks for each defense. We can only
summarize the main results within this section. In the ap-
pendix, we go in depth further comparing results for the 11
defenses.

VII. CONCLUSION
In this paper, we advance the field of adversarial machine
learning by providing a new black-box attack and a novel
black-box defense based on barrier zones. Our new attack is
experimentally shown to be stronger than the original Paper-
not attack. It also outperforms boundary and pure black-box
attacks on defenses like Xie and Mul-Def. Second, and most
importantly, we develop a new barrier zone based defense.
Our defense outperforms all 10 other defense methods we
tested under pure, mixed and boundary based black-box
attacks. When comparing across all black-box attacks and
datasets tested in this paper, our best defense configuration
gives over 85% robust accuracy for CIFAR-10 and Fashion-
MNIST, an improvement of over 30% compared to the next
best defense. Overall we develop the first barrier zone de-
fense (BARZ), experimentally shown to be robust against 14
different types of black-box attacks.
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APPENDIX

APPENDIX. EXPERIMENTAL DEFENSE RESULTS
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FIGURE 9: Robust accuracies for the targeted mixed black-
box (top) and targeted pure black-box attacks (bottom).

In this section, we present our supplementary experimental
results for

• the mixed targeted and untargeted black-box attacks,
• the pure targeted and untargeted black-box attacks and
• the boundary attacks – untargeted HopSkipJump [25]

and RayS [34].

We run these attacks on ten different defenses strategies,
Barrage of Random Transforms (BaRT) [22], The Odds are
Odd (Odds) [23], Ensemble Diversity (ADP) [24], Madry’s
Adversarial Training (Madry) [27], Multi-model-based De-
fense (Mul-Def) [21], Countering Adversarial Images using
Input Transformations (Guo) [20], Ensemble Adversarial
Training: Attacks and Defenses (Tramer) [14], Mixed Ar-
chitecture (Liu) [33], Mitigating adversarial effects through
randomization (Xie) [18], Thresholding Networks (a basic
proof of concept defense developed in this paper) and Bar-
rier Zones (BARZ) with the CIFAR-10 [45] and Fashion-
MNIST [44] datasets. The adversarial sample generation
is done by running white-box attacks on synthetic models
(a model obtained from either a pure or mixed black-box
attack). The six white-box attacks used for adversarial sample
generation are FGSM [8], BIM [38], MIM [39], PGD [27],
C&W [11] and EAD [40]. We also test the defense un-
der boundary black-box attacks (Hop Skip Jump [25] and
RayS [34].

We start our section with a discussion on the robustness of
defenses under the black-box attacks in this paper.

A. ROBUSTNESS OF THE DEFENSES
Figures 6 and 9 represent the robust accuracies of the de-
fenses under the different black-box attacks with the Fashion-
MNIST and CIFAR-10 datasets. For targeted attacks, Fig-
ure 10 shows how the defenses perform in two dimensions,
clean accuracy versus delta (δ). We have the following main
observations from these figures.

1) Mixed black box attacks are stronger than pure black-
box attacks and untargeted attacks are more powerful
than targeted ones. Compared to pure black-box attacks,
mixed black-box attacks are given more information
about the target model (original training data and query
access to the target model to label generated synthetic
data); for this reason mixed black box attacks should be
stronger than pure black box attacks. Because targeted
attacks can be considered as an optimization problem
with more constraints than untargeted attacks, targeted
attacks should take more effort to run than untargeted
ones, and are therefore less powerful.

2) Targeted pure black-box attacks seem to not present a
strong attack model. This is supported by the fact that
the vanilla scheme (which implements no defense at all)
already offers very good robustness (i.e., it already has
a high defense accuracy against targeted pure black-box
attacks). As a result, almost all considered defenses offer
good robustness and clean accuracy under this threat
model. This explains why the defenses are relatively
close together in the plots for targeted pure black-box
attacks in Figure 10.

3) As observed and discussed above, mixed black-box
attacks are stronger than pure black-box attacks. This
explains why a subset of the considered defenses can
still significantly improve over the vanilla scheme for
targeted mixed black box attacks as shown in Figure 10.

4) For the untargeted boundary attacks, there are many
defenses which have 0% robust accuracy. Hence, we
do not see any bars for these in Figure 6, for example
Vanilla, VanillaT-0.7, etc. have 0% robust accuracy.

5) The most interesting and important observations from
Figures 5, 8, 2, 6, 9, and 10 are as follows:
a) There exists a group of defenses which enjoy a high

robustness and clean accuracy, i.e., the defenses lie in
the upper left corner with small delta value and high
clean accuracy and

b) BARZ defenses always belong to that group in any
of the aforementioned scenarios.

These observations show that the BARZ family offers a
good robustness and clean accuracy compared to other
defenses in all scenarios.

We present more detailed attack and defense results in the
next sections for Fashion-MNIST and CIFAR-10. Note that
all the detailed results in the next two sections have been
visualized in Figures 5, 8, 2, 6, 9, and 10, where the most
important discussions and observations on these detailed
results have been summarized above.
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FIGURE 10: The δ metric vs clean accuracy for the targeted mixed black-box and targeted pure black box attacks. The BARZ
results are shown in green and the vanilla result is shown in gray.

B. FASHION-MNIST: ATTACKS AND DEFENSES
The results for Fashion-MNIST are described in Ta-
bles 3, 4, 5, 6, and 7. Recall the formula for the δ metric:

δ = γ + (p− γ)α = p− (p− γ)(1− α) = p− pd · β,
(6)

where p is the clean accuracy of the vanilla classifier (i.e., no
defense at all and without any adversarial presence), γ is the
drop in clean accuracy, i.e., γ = p−pd for pd representing the
clean accuracy of the defense while no attacker is present, α
is the attacker’s success rate against the defense and β is the
robust accuracy or defense success rate (also called defense
accuracy) and is equal to 1− α.
δ can be used to measure the effectiveness of different

defenses, the smaller the better. If two defenses offer roughly
the same δ, then it makes sense to consider their (γ, α) pairs
and choose the defense that either has the smaller α or the
smaller γ.

For Fashion-MNIST and CIFAR-10, p = 0.9356 and
0.9278, respectively. The value of δ is computed by com-
bining p of the vanilla classifier and pd of the considered
defense, and by looking at the best attack among all im-
plemented attacks on the given defense (this corresponds
to the maximum over the attacker’s success rates α for the
specific set of attacks considered, similarly, this corresponds
to the minimum over the various defense success rates β). For
example, the δ metric for BARZ-8 in Table 3 is computed as
follows: we substitute p = 0.9356, pd = 0.7779, and the
minimal β = 0.986 among all (currently known) targeted

mixed black-box attacks (in this case corresponding to the
FGSM-T attack) into formula (Eq. 6) for δ. This results in
δ = 0.168591.

Discussion. We have the following observations from the
aforementioned tables:

1) The BARZ family achieves the smallest δ for any attack
scenario. Figures 5, 8, 2 and 10 reflect this fact.

2) Many defenses (such as Guo, Liu, ADP, Tramer) have
a very high clean accuracy (i.e., close to the clean
accuracy of the vanilla classifier), but have a very large
δ. If we have a close look at the results presented in
Figures 6 and 9 or Tables 3, 5, 6 and 7, we can see that
they are vulnerable to black-box attacks. In other words,
they offer no security.

3) By combining the drop γ in clean accuracy and the
increment in robust accuracy β, the δ metric can be
used for understanding how well a defense performs
in the presence of attackers. In order to have a further
detailed evaluation, we need to separately look at the
attack success rate α (or, equivalently, robust accuracy
β) and clean accuracy of the defense pd.

4) From Tables 3, 4, 5 and 6 we conclude that mixed
black-box attacks are more efficient than pure black-box
attacks and untargeted black-box attacks are stronger
than targeted ones. When looking at Table 7, boundary
attacks are much stronger than mixed and pure black-
box attacks.
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TABLE 3: Fashion-MNIST targeted mixed black-box attack results. Note the β column refers to the minimum robust accuracy
across all targeted mixed black-box attacks.

FGSM-T IFGSM-T MIM-T PGD-T CW-T EAD-T β pd δ
Vanilla 0.707 0.529 0.46 0.531 0.993 0.991 0.46 0.9356 0.505224
VanillaT-0.7 0.757 0.601 0.516 0.588 0.989 0.989 0.516 0.9232 0.459229
VanillaT-0.95 0.848 0.767 0.717 0.787 0.997 0.997 0.717 0.892 0.296036
VanillaT-0.99 0.935 0.891 0.864 0.891 0.998 0.998 0.864 0.8442 0.206211
Liu 0.91 0.899 0.889 0.894 0.996 0.996 0.889 0.899 0.136389
ADP 0.793 0.515 0.499 0.519 0.987 0.986 0.499 0.9486 0.462249
Xie 0.711 0.62 0.576 0.626 0.963 0.954 0.576 0.8164 0.465354
Madry 0.963 0.996 0.995 0.996 0.983 0.962 0.962 0.8055 0.160709
Tramer 0.808 0.833 0.759 0.826 0.992 0.992 0.759 0.9361 0.2251
MulDef-4 0.831 0.804 0.764 0.811 0.988 0.984 0.764 0.9386 0.21851
MulDef-8 0.837 0.851 0.815 0.84 0.994 0.992 0.815 0.9365 0.172353
Guo 0.818 0.917 0.879 0.914 1 0.999 0.818 0.9023 0.197519
BARZ-2 0.934 0.961 0.949 0.961 0.999 0.998 0.934 0.8537 0.138244
BARZ-4 0.967 0.987 0.973 0.987 1 1 0.967 0.8204 0.142273
BARZ-8 0.986 0.998 0.995 0.997 1 1 0.986 0.7779 0.168591
BARZ-8R2 0.94 0.974 0.959 0.964 0.998 0.999 0.94 0.8611 0.126166
BARZ-8R6 0.989 0.998 0.985 0.994 1 0.999 0.985 0.792 0.15548
Odds 0.671 0.54 0.469 0.548 0.991 0.987 0.469 0.7547 0.581646
BaRT-1 0.836 0.807 0.764 0.805 0.978 0.976 0.764 0.9039 0.24502
BaRT-4 0.872 0.848 0.843 0.848 0.941 0.959 0.843 0.8294 0.236416
BaRT-6 0.882 0.876 0.857 0.877 0.935 0.947 0.857 0.7817 0.265683
BaRT-8 0.866 0.873 0.849 0.858 0.942 0.958 0.849 0.7144 0.329074

TABLE 4: Fashion-MNIST targeted pure black-box attack results. Note the β column refers to the minimum robust accuracy
across all targeted pure black-box attacks.

FGSM-T IFGSM-T MIM-T PGD-T CW-T EAD-T β pd δ
Vanilla 0.865 0.889 0.817 0.879 0.995 0.992 0.817 0.9356 0.171215
VanillaT-0.7 0.892 0.912 0.848 0.909 0.995 0.994 0.848 0.9232 0.152726
VanillaT-0.95 0.937 0.945 0.898 0.937 0.998 0.999 0.898 0.892 0.134584
VanillaT-0.99 0.962 0.965 0.944 0.965 1 1 0.944 0.8442 0.138675
Liu 0.948 0.962 0.926 0.949 0.999 0.998 0.926 0.899 0.103126
ADP 0.875 0.839 0.782 0.861 0.992 0.99 0.782 0.9486 0.193795
Xie 0.882 0.899 0.838 0.914 0.974 0.973 0.838 0.8164 0.251457
Madry 0.952 0.971 0.971 0.972 0.951 0.943 0.943 0.8055 0.176014
Tramer 0.9 0.967 0.917 0.968 0.995 0.993 0.9 0.9361 0.09311
MulDef-4 0.895 0.941 0.892 0.942 0.992 0.992 0.892 0.9386 0.098369
MulDef-8 0.885 0.946 0.902 0.958 0.994 0.992 0.885 0.9365 0.106798
Guo 0.923 0.982 0.959 0.981 0.993 0.994 0.923 0.9023 0.102777
BARZ-2 0.973 0.989 0.978 0.988 0.998 0.998 0.973 0.8537 0.10495
BARZ-4 0.979 0.995 0.985 0.998 1 1 0.979 0.8204 0.132428
BARZ-8 0.993 0.998 0.993 0.999 1 1 0.993 0.7779 0.163145
BARZ-8R2 0.956 0.99 0.976 0.994 0.997 0.999 0.956 0.8611 0.112388
BARZ-8R6 0.989 0.998 0.991 0.998 1 1 0.989 0.792 0.152312
Odds 0.865 0.891 0.821 0.882 0.998 0.993 0.821 0.7547 0.315991
BaRT-1 0.906 0.944 0.906 0.941 0.993 0.992 0.906 0.9039 0.116667
BaRT-4 0.907 0.939 0.896 0.936 0.976 0.977 0.896 0.8294 0.192458
BaRT-6 0.914 0.927 0.901 0.931 0.966 0.954 0.901 0.7817 0.231288
BaRT-8 0.92 0.907 0.9 0.938 0.959 0.945 0.9 0.7144 0.29264

5) BARZ can realize different combinations of defender
accuracy pd and attacker’s success rate α by tuning the
number of classifiers in the defense.

6) BARZ-8R2, Madry and MulDef have the smallest δ
values for boundary attacks. For the BARZ and MulDef
defenses the reason is that for a given input x, for each
evaluation, these defenses introduce some randomness.
As a consequence, the output class label can be changed.
This strongly affects the efficiency of boundary attacks
which need to accurately estimate the gradients of many
images (and due to the introduced randomness these
estimates become less accurate).

C. CIFAR-10: ATTACKS AND DEFENSES
The results for CIFAR-10 are described in Tables 8, 9, 10, 11
and 12.

Discussion. We have the following observations from afore-
mentioned tables (identical to Fashion-MNIST with a slight
difference in item 6):

1) The BARZ family achieves the smallest δ for any attack
scenario. Figures 5, 8, 2 and 10 reflect this fact.

2) Many defenses (such as Guo, Liu, ADP, Tramer) have
a very high clean accuracy (i.e., close to the clean
accuracy of the vanilla classifier), but have a very large
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TABLE 5: Fashion-MNIST untargeted mixed black-box attack results. Note the β column refers to the minimum robust
accuracy across all untargeted mixed black-box attacks.

FGSM-U IFGSM-U MIM-U PGD-U CW-U EAD-U β pd δ
Vanilla 0.234 0.123 0.111 0.118 0.961 0.939 0.111 0.9356 0.831748
VanillaT-0.7 0.345 0.172 0.184 0.178 0.972 0.953 0.172 0.9232 0.77681
VanillaT-0.95 0.573 0.307 0.335 0.304 0.994 0.991 0.304 0.892 0.664432
VanillaT-0.99 0.717 0.501 0.518 0.501 0.994 0.996 0.501 0.8442 0.512656
Liu 0.683 0.562 0.609 0.554 0.987 0.983 0.554 0.899 0.437554
ADP 0.141 0.085 0.104 0.089 0.934 0.909 0.085 0.9486 0.854969
Xie 0.212 0.197 0.19 0.201 0.794 0.772 0.19 0.8164 0.780484
Madry 0.489 0.959 0.954 0.963 0.921 0.866 0.489 0.8055 0.541711
Tramer 0.344 0.379 0.35 0.395 0.977 0.971 0.344 0.9361 0.613582
MulDef-4 0.35 0.416 0.356 0.404 0.947 0.94 0.35 0.9386 0.60709
MulDef-8 0.377 0.467 0.405 0.465 0.951 0.953 0.377 0.9365 0.58254
Guo 0.376 0.55 0.496 0.555 0.989 0.982 0.376 0.9023 0.596335
BARZ-2 0.696 0.78 0.731 0.771 0.998 0.996 0.696 0.8537 0.341425
BARZ-4 0.82 0.851 0.817 0.847 1 1 0.817 0.8204 0.265333
BARZ-8 0.906 0.941 0.92 0.953 1 1 0.906 0.7779 0.230823
BARZ-8R2 0.752 0.796 0.744 0.73 0.996 0.986 0.73 0.8611 0.306997
BARZ-8R6 0.873 0.92 0.911 0.925 1 1 0.873 0.792 0.244184
Odds 0.224 0.153 0.135 0.154 0.944 0.937 0.135 0.7547 0.833716
BaRT-1 0.359 0.383 0.339 0.376 0.861 0.877 0.339 0.9039 0.629178
BaRT-4 0.41 0.399 0.384 0.406 0.779 0.791 0.384 0.8294 0.61711
BaRT-6 0.37 0.437 0.417 0.411 0.724 0.726 0.37 0.7817 0.646371
BaRT-8 0.4 0.41 0.365 0.392 0.706 0.696 0.365 0.7144 0.674844

TABLE 6: Fashion-MNIST untargeted pure black-box attack results. Note the β column refers to the minimum robust accuracy
across all untargeted pure black-box attacks.

FGSM-U IFGSM-U MIM-U PGD-U CW-U EAD-U β pd δ
Vanilla 0.429 0.363 0.351 0.374 0.914 0.905 0.351 0.9356 0.607204
VanillaT-0.7 0.536 0.415 0.399 0.42 0.935 0.93 0.399 0.9232 0.567243
VanillaT-0.95 0.688 0.512 0.505 0.513 0.964 0.962 0.505 0.892 0.48514
VanillaT-0.99 0.801 0.622 0.621 0.625 0.978 0.977 0.621 0.8442 0.411352
Liu 0.753 0.67 0.67 0.682 0.96 0.959 0.67 0.899 0.33327
ADP 0.398 0.357 0.321 0.35 0.926 0.923 0.321 0.9486 0.631099
Xie 0.386 0.401 0.395 0.409 0.789 0.754 0.386 0.8164 0.62047
Madry 0.655 0.789 0.787 0.789 0.717 0.705 0.655 0.8055 0.407998
Tramer 0.538 0.6 0.548 0.6 0.926 0.923 0.538 0.9361 0.431978
MulDef-4 0.531 0.545 0.517 0.562 0.932 0.923 0.517 0.9386 0.450344
MulDef-8 0.495 0.556 0.516 0.566 0.924 0.929 0.495 0.9365 0.472033
Guo 0.61 0.725 0.674 0.729 0.899 0.897 0.61 0.9023 0.385197
BARZ-2 0.791 0.845 0.798 0.843 0.954 0.956 0.791 0.8537 0.260323
BARZ-4 0.834 0.879 0.845 0.878 0.97 0.971 0.834 0.8204 0.251386
BARZ-8 0.899 0.929 0.903 0.937 0.983 0.983 0.899 0.7779 0.236268
BARZ-8R2 0.756 0.794 0.765 0.827 0.951 0.957 0.756 0.8611 0.284608
BARZ-8R6 0.865 0.918 0.882 0.92 0.982 0.977 0.865 0.792 0.25052
Odds 0.43 0.391 0.366 0.397 0.94 0.926 0.366 0.7547 0.65938
BaRT-1 0.548 0.536 0.488 0.533 0.893 0.888 0.488 0.9039 0.494497
BaRT-4 0.547 0.535 0.5 0.524 0.782 0.799 0.5 0.8294 0.5209
BaRT-6 0.52 0.502 0.469 0.507 0.74 0.725 0.469 0.7817 0.568983
BaRT-8 0.47 0.453 0.459 0.466 0.675 0.683 0.453 0.7144 0.611977

δ. If we have a close look at the results presented in
Figures 6 and 9 or Tables 8, 10, 11 and 12, we can see
that they are vulnerable to black-box attacks. In other
words, they offer no security.

3) By combining the drop γ in clean accuracy and the
increment in robust accuracy β, the δ metric can be
used for understanding how well a defense performs
in the presence of attackers. In order to have a further
detailed evaluation, we need to separately look at the
attack success rate α (or, equivalently, robust accuracy
β) and clean accuracy of the defense pd.

4) From Tables 8, 9, 10, and 11 we conclude that mixed

black-box attacks are more efficient than pure black-box
attacks and untargeted black-box attacks are stronger
than targeted ones. When looking at Table 12, boundary
attacks are much stronger than mixed and pure black-
box attacks.

5) BARZ can realize different combinations of defender
accuracy pd and attacker’s success rate α by tuning the
number of classifiers in the defense.

6) BARZ-8R6/2, Xie and MulDef have the smallest δ val-
ues for boundary attacks. The reason is that for a given
input x, for each evaluation, these defenses introduce
some randomness. As a consequence, the output class
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TABLE 7: Fashion-MNIST untargeted boundary attack results. Note the β column refers to the minimum robust accuracy
across all untargeted boundary black-box attacks.

HSJA RayS β pd δ
Vanilla 0 0.09 0 0.9356 0.9356
VanillaT-0.7 0 0.1 0 0.9232 0.9356
VanillaT-0.95 0 0.18 0 0.892 0.9356
VanillaT-0.99 0 0.47 0 0.8442 0.9356
Liu 0 0.18 0 0.899 0.9356
ADP 0 0.04 0 0.9486 0.9356
Xie 0.85 0.63 0.63 0.8164 0.421268
Madry 0.99 0.96 0.96 0.8055 0.16232
Tramer 0 0.18 0 0.9361 0.9356
MulDef-4 0.82 0.66 0.66 0.9386 0.316124
MulDef-8 0.92 0.7 0.7 0.9365 0.28005
Guo 0 0.32 0 0.9023 0.9356
BARZ-2 0.1 0.61 0.1 0.8537 0.85023
BARZ-4 0.53 0.93 0.53 0.8204 0.500788
BARZ-8 0.89 1 0.89 0.7779 0.243269
BARZ-8R2 0.99 0.9 0.9 0.8611 0.16061
BARZ-8R6 1 0.92 0.92 0.792 0.20696
Odds NA NA NA NA NA
BaRT-1 NA NA NA NA NA
BaRT-4 NA NA NA NA NA
BaRT-6 NA NA NA NA NA
BaRT-8 NA NA NA NA NA

TABLE 8: CIFAR-10 targeted mixed black-box attack results. Note the β column refers to the minimum robust accuracy across
all targeted mixed black-box attacks.

FGSM-T IFGSM-T MIM-T PGD-T CW-T EAD-T β pd δ
Vanilla 0.866 0.861 0.777 0.848 0.991 0.991 0.777 0.9278 0.206899

VanillaT-0.7 0.911 0.891 0.839 0.893 0.995 0.996 0.839 0.9038 0.169512
VanillaT-0.95 0.961 0.956 0.928 0.955 0.998 0.999 0.928 0.8468 0.14197
VanillaT-0.99 0.984 0.983 0.973 0.984 1 1 0.973 0.7879 0.161173

Liu 0.939 0.942 0.883 0.943 1 1 0.883 0.8528 0.174778
ADP 0.843 0.698 0.605 0.712 0.995 0.987 0.605 0.943 0.357285
Xie 0.83 0.821 0.763 0.858 0.982 0.981 0.763 0.7064 0.388817

Madry 0.96 0.979 0.955 0.98 0.999 0.995 0.955 0.7524 0.209258
Tramer 0.901 0.934 0.854 0.942 0.998 0.996 0.854 0.8524 0.19985

MulDef-4 0.889 0.902 0.822 0.913 0.987 0.986 0.822 0.8709 0.21192
MulDef-8 0.89 0.908 0.817 0.893 0.983 0.992 0.817 0.8556 0.228775

Guo 0.891 0.902 0.833 0.901 0.994 0.991 0.833 0.9092 0.170436
BARZ-2 0.969 0.971 0.945 0.971 1 0.999 0.945 0.8507 0.123889
BARZ-4 0.986 0.987 0.976 0.984 1 1 0.976 0.8106 0.136654
BARZ-8 0.993 0.991 0.98 0.993 1 1 0.98 0.7565 0.18643

BARZ-8R2 0.941 0.962 0.898 0.959 0.999 1 0.898 0.8495 0.164949
BARZ-8R6 0.986 0.989 0.978 0.993 1 1 0.978 0.7767 0.168187

Odds 0.941 0.938 0.911 0.93 0.997 0.991 0.911 0.7141 0.277255
BaRT-1 0.886 0.872 0.799 0.875 0.975 0.973 0.799 0.8571 0.242977
BaRT-4 0.91 0.914 0.866 0.901 0.971 0.974 0.866 0.7513 0.277174
BaRT-7 0.904 0.921 0.877 0.917 0.963 0.946 0.877 0.6114 0.391602
BaRT-10 0.91 0.911 0.903 0.921 0.928 0.944 0.903 0.4869 0.488129

label can be changed. This strongly affects the efficiency
of boundary attacks which need to accurately estimate
the gradients of many images (and due to the introduced
randomness these estimates become less accurate).

APPENDIX. EXPERIMENTAL ATTACK RESULTS

As we mentioned in the main body of the paper, the mixed
black-box attack can be thought of as an extension of the
Papernot attack. In this section we give experimental evi-
dence with the CIFAR-10 dataset to support our claims. In
Figure 11 we show a graphical representation of the attack
success rate as a function of training data. On the x-axis

of the graph is the percent of training data used at the start
of the attack to build the synthetic model. On the y-axis of
the graph is the attack success rate of the attack on a vanilla
(undefended) model.

For this experiment we fix several variables in order to
make the comparison. We use the FGSM attack on the
synthetic model with ε = 0.05 to create adversarial samples.
We fix the number of iterations in the attack to be N = 4
for all the experiments and λ = 0.1. In Papernot’s original
attack on an MNIST classifier 0.3% of the original training
data is used. We show that as you increase the amount of
training data (and subsequent queries) the attack success rate
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TABLE 9: CIFAR-10 targeted pure black-box attack results. Note the β column refers to the minimum robust accuracy across
all targeted pure black-box attacks.

FGSM-T IFGSM-T MIM-T PGD-T CW-T EAD-T β pd δ
Vanilla 0.902 0.917 0.853 0.924 0.984 0.984 0.853 0.9278 0.136387

VanillaT-0.7 0.93 0.947 0.895 0.947 0.991 0.989 0.895 0.9038 0.118899
VanillaT-0.95 0.962 0.974 0.945 0.972 0.996 0.996 0.945 0.8468 0.127574
VanillaT-0.99 0.978 0.985 0.964 0.987 0.997 0.996 0.964 0.7879 0.168264

Liu 0.939 0.965 0.912 0.971 0.994 0.993 0.912 0.8528 0.150046
ADP 0.905 0.933 0.857 0.935 0.987 0.987 0.857 0.943 0.119649
Xie 0.898 0.929 0.87 0.926 0.957 0.961 0.87 0.7064 0.313232

Madry 0.904 0.917 0.894 0.914 0.895 0.847 0.847 0.7524 0.290517
Tramer 0.904 0.958 0.875 0.955 0.977 0.981 0.875 0.8524 0.18195

MulDef-4 0.883 0.933 0.843 0.937 0.981 0.984 0.843 0.8709 0.193631
MulDef-8 0.879 0.952 0.855 0.944 0.982 0.978 0.855 0.8556 0.196262

Guo 0.911 0.938 0.879 0.935 0.983 0.985 0.879 0.9092 0.128613
BARZ-2 0.955 0.974 0.952 0.974 0.995 0.995 0.952 0.8507 0.117934
BARZ-4 0.972 0.992 0.972 0.991 0.995 0.995 0.972 0.8106 0.139897
BARZ-8 0.985 0.993 0.984 0.994 0.998 0.998 0.984 0.7565 0.183404

BARZ-8R2 0.947 0.977 0.936 0.97 0.994 0.993 0.936 0.8495 0.132668
BARZ-8R6 0.98 0.99 0.981 0.992 0.998 0.998 0.98 0.7767 0.166634

Odds 0.956 0.958 0.924 0.965 0.987 0.986 0.924 0.7141 0.267972
BaRT-1 0.909 0.943 0.88 0.956 0.979 0.979 0.88 0.8571 0.173552
BaRT-4 0.908 0.952 0.877 0.933 0.979 0.963 0.877 0.7513 0.26891
BaRT-7 0.911 0.931 0.89 0.923 0.952 0.948 0.89 0.6114 0.383654
BaRT-10 0.903 0.916 0.898 0.912 0.932 0.931 0.898 0.4869 0.490564

TABLE 10: CIFAR-10 untargeted mixed black-box attack results. Note the β column refers to the minimum robust accuracy
across all untargeted mixed black-box attacks.

FGSM-U IFGSM-U MIM-U PGD-U CW-U EAD-U β pd δ
Vanilla 0.334 0.387 0.259 0.374 0.986 0.987 0.259 0.9278 0.6875

VanillaT-0.7 0.547 0.591 0.523 0.591 0.992 0.987 0.523 0.9038 0.455113
VanillaT-0.95 0.803 0.812 0.773 0.818 0.999 1 0.773 0.8468 0.273224
VanillaT-0.99 0.928 0.916 0.892 0.909 1 1 0.892 0.7879 0.224993

Liu 0.731 0.703 0.628 0.707 0.994 0.997 0.628 0.8528 0.392242
ADP 0.332 0.224 0.147 0.226 0.992 0.985 0.147 0.943 0.789179
Xie 0.296 0.377 0.262 0.372 0.837 0.857 0.262 0.7064 0.742723

Madry 0.777 0.838 0.767 0.838 0.989 0.982 0.767 0.7524 0.350709
Tramer 0.568 0.616 0.442 0.638 0.985 0.977 0.442 0.8524 0.551039

MulDef-4 0.493 0.525 0.373 0.536 0.932 0.924 0.373 0.8709 0.602954
MulDef-8 0.491 0.568 0.397 0.557 0.916 0.915 0.397 0.8556 0.588127

Guo 0.483 0.568 0.445 0.556 0.992 0.985 0.445 0.9092 0.523206
BARZ-2 0.807 0.813 0.752 0.825 1 0.997 0.752 0.8507 0.288074
BARZ-4 0.916 0.901 0.883 0.912 1 0.999 0.883 0.8106 0.21204
BARZ-8 0.962 0.955 0.926 0.95 1 1 0.926 0.7565 0.227281

BARZ-8R2 0.767 0.755 0.68 0.756 0.99 0.989 0.68 0.8495 0.35014
BARZ-8R6 0.932 0.935 0.898 0.942 1 1 0.898 0.7767 0.230323

Odds 0.646 0.664 0.578 0.673 0.974 0.977 0.578 0.7141 0.51505
BaRT-1 0.507 0.553 0.398 0.543 0.917 0.933 0.398 0.8571 0.586674
BaRT-4 0.482 0.554 0.443 0.577 0.803 0.788 0.443 0.7513 0.594974
BaRT-7 0.447 0.534 0.426 0.535 0.704 0.678 0.426 0.6114 0.667344
BaRT-10 0.391 0.465 0.382 0.492 0.581 0.583 0.382 0.4869 0.741804

increases. When the percent of training data reaches 100%
we have what we refer to as the mixed black-box attack. This
represents a substantial increase in the success rate of the
attack. In our experiment for CIFAR-10 we show it increases
from 24.7% to 66.6%, an attack success rate increase of
41.9%.

On certain defenses the mixed black-box attack also out-
performs other attacks. For example consider the randomized
Xie defense. The robust accuracy for CIFAR-10 is 85% under
untargeted boundary attacks. However, the robust accuracy
is the lowest under the untargeted mixed black-box attack,
at just 26.2%. Likewise, the mixed black-box attack out-

performs the boundary attacks on MulDef-4 and MulDef-8
(although pure black-box attacks here are the strongest by a
slim 1% margin). If we consider Fashion-MNIST we also can
see defenses on which the mixed black-box outperforms the
other attacks. On Fashion-MNIST the lowest robust accuracy
is obtained under the mixed black-box attack for the Xie,
MulDef and Madry defenses.

To conclude the purpose of our analysis here is two-
fold. First through our experiments we show that when the
conditions are held the same, the mixed black-box attack
clearly outperforms the original Papernot attack. Second we
show the mixed black-box attack is the most effective attack
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TABLE 11: CIFAR-10 untargeted pure black-box attack results. Note the β column refers to the minimum robust accuracy
across all untargeted pure black-box attacks.

FGSM-U IFGSM-U MIM-U PGD-U CW-U EAD-U β pd δ
Vanilla 0.443 0.453 0.384 0.455 0.923 0.919 0.384 0.9278 0.571525

VanillaT-0.7 0.587 0.593 0.535 0.605 0.946 0.943 0.535 0.9038 0.444267
VanillaT-0.95 0.804 0.772 0.718 0.78 0.974 0.974 0.718 0.8468 0.319798
VanillaT-0.99 0.899 0.856 0.831 0.864 0.987 0.989 0.831 0.7879 0.273055

Liu 0.735 0.701 0.649 0.691 0.972 0.972 0.649 0.8528 0.374333
ADP 0.487 0.475 0.385 0.485 0.932 0.932 0.385 0.943 0.564745
Xie 0.408 0.438 0.352 0.409 0.694 0.705 0.352 0.7064 0.679147

Madry 0.55 0.602 0.534 0.6 0.694 0.663 0.534 0.7524 0.526018
Tramer 0.563 0.541 0.441 0.561 0.849 0.845 0.441 0.8524 0.551892

MulDef-4 0.496 0.493 0.36 0.482 0.861 0.859 0.36 0.8709 0.614276
MulDef-8 0.515 0.51 0.384 0.499 0.854 0.844 0.384 0.8556 0.59925

Guo 0.492 0.542 0.446 0.565 0.904 0.899 0.446 0.9092 0.522297
BARZ-2 0.795 0.759 0.699 0.793 0.97 0.968 0.699 0.8507 0.333161
BARZ-4 0.887 0.879 0.835 0.882 0.992 0.991 0.835 0.8106 0.250949
BARZ-8 0.947 0.932 0.892 0.928 0.998 0.997 0.892 0.7565 0.253002

BARZ-8R2 0.766 0.771 0.707 0.797 0.967 0.966 0.707 0.8495 0.327204
BARZ-8R6 0.932 0.908 0.865 0.919 0.995 0.995 0.865 0.7767 0.255955

Odds 0.757 0.66 0.617 0.675 0.934 0.93 0.617 0.7141 0.4872
BaRT-1 0.594 0.588 0.473 0.608 0.853 0.853 0.473 0.8571 0.522392
BaRT-4 0.541 0.552 0.445 0.556 0.737 0.744 0.445 0.7513 0.593472
BaRT-7 0.479 0.478 0.375 0.476 0.586 0.566 0.375 0.6114 0.698525
BaRT-10 0.404 0.367 0.365 0.414 0.466 0.463 0.365 0.4869 0.750082

TABLE 12: CIFAR-10 untargeted boundary attack results. Note the β column refers to the minimum robust accuracy across all
boundary attacks.

RayS HSJA β pd δ
Vanilla 0.02 0 0 0.9278 0.9278
VanillaT-0.7 0.12 0 0 0.9038 0.9278
VanillaT-0.95 1 0 0 0.8468 0.9278
VanillaT-0.99 1 0 0 0.7879 0.9278
Liu 0.29 0 0 0.8528 0.9278
ADP 0.05 0 0 0.943 0.9278
Xie 0.85 0.84 0.84 0.7064 0.334424
Madry 0.66 0.52 0.52 0.7524 0.536552
Tramer 0.02 0 0 0.8524 0.9278
MulDef-4 0.7 0.83 0.7 0.8709 0.31817
MulDef-8 0.74 0.88 0.74 0.8556 0.294656
Guo 0.01 0 0 0.9092 0.9278
BARZ-2 0.04 0 0 0.8507 0.9278
BARZ-4 0.27 0.16 0.16 0.8106 0.798104
BARZ-8 0.6 0.39 0.39 0.7565 0.632765
BARZ-8R2 0.76 0.99 0.76 0.8495 0.28218
BARZ-8R6 0.87 0.99 0.87 0.7767 0.252071
Odds NA NA NA NA NA
BaRT-1 NA NA NA NA NA
BaRT-4 NA NA NA NA NA
BaRT-7 NA NA NA NA NA
BaRT-10 NA NA NA NA NA

against certain defenses. To be clear we DO NOT claim to
have the universally strongest black-box attack. We merely
show that as different defenses employ different defense tech-
niques, certain black-box attacks will be more effective than
others. Thus, it is imperative to test a wide range of black-
box attacks (as is done in this paper). From this range of
attacks to be tested, the mixed black-box is clearly necessary
for validation of a defense.

APPENDIX. ADVERSARIAL ATTACK DESCRIPTIONS

A. PURE AND MIXED BLACK-BOX ATTACK

As we mentioned in the main paper, the mixed black-box
attack is an extension of the original attack proposed by
Papernot [26]. Here we denote g as the synthetic network
for the oracle based black-box attack from [26]. The attacker
uses an oracle O which represents black-box access to the
target model f . The oracle access in this case provides a
class label F (f(x)) for a query x (and not the score vector
f(x)). Initially, the attacker has part of the training data set
X , i.e., they know D = {(x, F (f(x))) : x ∈ X0} for some
X0 ⊆ X . Notice that for a single iteration N = 1 reduces
the attack to an algorithm which does not need any oracle
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FIGURE 11: FGSM mixed black-box attack success rate as a function of the % of training data used in the attack.

access toO build the synthetic model; this reduced algorithm
is the one used in the pure black-box attack [10], [33], [48].
In the mixed black-box attack we assume the most capable
black-box adversary in Algorithm 1 with access to the entire
training data set X0 = X (notice that this excludes the test
data used for evaluating the attack success rate).

In order to construct a synthetic network the attacker
chooses a-priori a substitute architecture G for which the
synthetic model parameters θg need to be trained. The at-
tacker uses known image-label pairs in D to train θg using
a training method M (e.g., Adam [49]). In each iteration the
known data is doubled using the following data augmentation
technique: For each image x in the current data set D, black-
box access to the target model gives label l = O(x). The
Jacobian of the synthetic network score vector g with respect
to its parameters θg is evaluated/computed for image x. The
signs of the column in the Jacobian matrix that correspond
to class label l are multiplied with a (small) constant λ – this
constitutes a vector which is added to x. This gives one new
image for each x and this leads to a doubling of D. After N
iterations the algorithm outputs the trained parameters θg for
the final augmented data set D.

B. ADVERSARIAL SAMPLE GENERATION
After the synthetic model is trained, adversarial samples need
to be created from the synthetic model to attack the defense.
Hence any white-box attack can be run on the synthetic
model to create an adversarial example. The adversary can
then check if this example fools the defense. To reiterate,
in this paper we focus on a black-box adversary so running
white-box attacks directly on any defense is not within the
scope of our adversarial model. We briefly introduce the
following commonly used white-box attacks that we use for
adversarial sample generation:

Fast Gradient Sign Method (FGSM) – [8]. Computes x′ =
x′ + ε × sign(∇xL(x, l; θ) where L is a loss function (e.g,
cross entropy) of model f .

Basic Iterative Methods (BIM) – [38]. x′i = clipx,ε(x
′
i−1 +

ε
r ×sign(∇x′i−1

L(x′i−1, l; θ)) where x′0 = x, r is the number
of iterations, clip is a clipping operation.

Momentum Iterative Methods (MIM) – [39]. This is a
variant of BIM using momentum trick to create the gradient
gi, i.e., x′i = clipx,ε(x

′
i−1 +

ε
r × sign(gi)).

Projected Gradient Descent (PGD) – [27]. This is also a
variant of BIM where the clipping operation is replaced by a
projection operation.

Carlini and Wagner attack (C&W) – [11]. We define
x′(ω) = 1

2 (tanhω + 1) and g(x) = max(max(si : i 6=
l) − si,−κ) where f(x) = (s1, s2, . . .) is the score vector
of input x of classifier f and κ controls the confidence on
the adversarial examples. The adversary builds the following
objective function for finding the adversarial noise.

min
ω
‖x′(ω)− x‖22 + cf(x′(ω)),

where c is a constant chosen by a modified binary search.

Elastic Net Attack (EAD) – [40]. This is the variant of C&W
attack with the following objective function.

min
ω
‖x′(ω)− x‖22 + β‖x′(ω)− x‖1 + cf(x′(ω)).

APPENDIX. EXPERIMENTAL IMPLEMENTATION
DETAILS AND MISC.
A. IMPLEMENTATION OF BARZ
In the BARZ, we use image transformations that are com-
posed of a resizing operation i(x) and a linear transformation
c(x) = Ax + b. In a CNN implementation one can think
of i(c(x)) as an extra layer in the CNN architecture itself.
We refer to this extra layer as the protected layer. An input
image x at a protected layer in BARZ is linearly transformed
into an image i(c(x)) before it enters the corresponding CNN
network.

For the resize operations i(·) used in each of the protected
layers in BARZ, we choose sizes that are larger than the
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original dimensions of the image data. We do this to prevent
loss of information in the images that downsizing would
create (and this would hurt the clean accuracy of BARZ). In
our experiments we use BARZ with 2, 4, and 8 protected
layers. Each protected layer gets its own resize operation
i(·). When using 8 protected layers, we use image resizing
operations from 32 to 32, 40, 48, 64, 72, 80, 96, 104.
Each protected layer will be differentiated from each other
protected layer due to the difference in how much resizing
each layer implements. This will lead to less transferability
between the protected layers and as a result we expect to
see a wider barrier zone which diminishes the attacker’s
success rate. When using 4 protected layers, we use a copy
of the 4 protected layers from BARZ with 8 networks that
correspond to the image resizing operations from 32 to 32,
48, 72, 96. When using 2 protected layers, we use a copy
of the 2 protected layers from BARZ with 8 networks that
correspond to the image resizing operations from 32 to 32
and 104.

For each protected layer, the linear transformation c(x) =
Ax+ b is randomly chosen from some statistical distribution
(the distribution is public knowledge and therefore known by
the adversary). Design of the statistical distribution depends
on the complexity of the considered data set (in our case
we experiment with Fashion-MNIST and CIFAR-10).For
CIFAR-10 we take matrices Ai to be identity matrices (this
also makes A the identity matrix in the vector representation
of c(x)) and we use the same matrix b for each of the matrices
bi, i.e.,

b′ = b1 = b2 = b3.

This means that we use the same random offset in the red,
blue, and green values of a pixel. The reason for making
this design decision is because for CIFAR-10 we found that
fully random A creates large drops in clean accuracy, even
when the network is trained to learn such distortions. As a
result, for data sets with high spatial complexity like CIFAR-
10, we do not select A randomly. We choose A to be the
identity matrix. Likewise for b′ we only randomly generate
35% of the matrix values and leave the rest as 0. For the
randomly generated values, we choose them from a uniform
distribution from −0.5 to 0.5.

For datasets with less spatial complexity like Fashion-
MNIST, we equate matrices A′ = A1 = A2 = A3 and
b′ = b1 = b2 = b3 and select A′ and b′ as random matri-
ces: The values of A′ and b′ are selected from a Gaussian
distribution with µ = 0 and σ = 0.1.

B. ATTACK AND DEFENSE PARAMETERS
In order to implement a black-box attack we first run Al-
gorithm 1 which trains a synthetic network g. Next, out of
the test data (each dataset has 10,000 samples in our setup)
we select the first 1000 samples correctly identified by the
defense. For each of the 1000 samples we run a certain
white-box attack to produce 1000 adversarial examples. The
attacker’s success rate is the fraction of adversarial examples

which change l to the desired new randomly selected l′ in a
targeted attack or any other label l′ 6= ⊥ for an untargeted
attack.

The parameters for the adversarial generation techniques(
white-box attacks) used in conjunction with our synthetic
model for both the mixed black-box attack and pure black-
box attack can be found in table 13. For all attacks we use
the ‖l‖∞ norm except for the Carlini and Wagner attack. For
the Carlini and Wagner attack only the ‖l‖2 implementation
(given by the authors) has a run time efficient enough for our
current hardware setup (to test on 10 defenses and 2 datasets).
Future work may include trying mixed black-box attack with
the ‖l‖∞ if efficient implementations of the Carlini and
Wagner attack become available in the future.

TABLE 13: Attacks’ parameters. i - number of iterations, d -
decaying factor, r radius of the ball for generating the initial
noise, c - constant value of C&W attack, ε - noise magnitude,
β - constant value of EAD attack. Binary Search = Bi.Sr

Attacks Fashion-MNIST CIFAR-10
FGSM ε = 0.1 ε = 0.05
BIM i = 10, ε = 0.01 i = 10, ε = 0.005
PGD i = 10, r = 0.031, ε = 0.01 i = 10, r = 0.031, ε = 0.005
MIM i = 10, d = 1.0, ε = 0.01 i = 10, d = 1.0, ε = 0.005
C&W i = 1000, c = Bi.Sr i = 1000, c = Bi.Sr
EAD i = 1000, c = Bi.Sr, β = 0.01 i = 1000, c = Bi.Sr, β = 0.01

The precise set-up for our experiments is given in Tables
14, 15, and 16. Table 14 details the training method T in
Algorithm 1. For the evaluated data sets Fashion-MNIST and
CIFAR-10 without data augmentation, we enumerate in Table
15 the amount |X0| of training data together with parameters
λ andN (λ = 0.1 andN = 6 are taken from the oracle based
black-box attack paper of [26]; notice that a test data set of
size 10,000 is standard practice; all remaining data serves
training and this is entirely accessible by the attacker).

Table 16 depicts the architecture G of the CNN network
of the synthetic network g for the different data sets; the
structure has several layers (not to be confused with ’pro-
tection layer’ in BARZ which is an image transformation
together with a whole CNN in itself). The adversary attempts
to attack BARZ and will first learn a synthetic network g
with architecture G that corresponds to Table 16. Notice that
the image transformations are kept secret and for this reason
the attacker can at best train a synthetic vanilla network.
Of course the attacker does know the set from which the
image transformations in BARZ are taken and can poten-
tially try to learn a synthetic CNN for each possible image
transformation and do some majority vote (like BARZ) on
the outputted labels generated by these CNNs. However,
there are exponentially many transformations making such
an attack infeasible.

C. BOUNDARY ATTACK COMPUTATIONAL
COMPLEXITY AND TARGETED BOUNDARY ATTACKS
In the main body of the paper we mention that both the Odds
are Odd (Odds) and Barrage of random transforms (BaRT)
are not applicable for boundary attacks. For pure and mixed
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TABLE 14: Training parameters used in the experiments

Training Parameter Value

Optimization Method ADAM
Learning Rate 0.0001

Batch Size 64
Epochs 100

Data Augmentation None

TABLE 15: Mixed black-box attack parameters
|X0| N λ

CIFAR-10 50000 4 0.1
Fashion-MNIST 60000 4 0.1

TABLE 16: Architectures of synthetic neural networks g
from [11]

Layer Type Fashion-MNIST and CIFAR-10

Convolution + ReLU 3 × 3 × 64
Convolution + ReLU 3 × 3 × 64

Max Pooling 2 × 2
Convolution + ReLU 3 × 3 × 128
Convolution + ReLU 3 × 3 × 128

Max Pooling 2 × 2
Fully Connected + ReLU 256
Fully Connected + ReLU 256

Softmax 10

black-box attacks we can efficiently parallelize the evaluation
of many samples using either the GPU or multiple CPUs (in
the case of image transformations). However, the boundary
attacks require large number of evaluations done sequentially
(e.g. 10,000 queries) so we cannot take advantage of the
previously mentioned parallelism. This causes the run time
of boundary attacks for these defenses with our standard
implementation to be on the order of weeks. These attacks are
not applicable for our current setup (28 core CPU machine
and 2 Titan V GPUs).

It is also worth noting in this paper we do not directly
consider targeted boundary attacks. Although we do provide
experimental details for some other black-box target attacks,
in this paper our main focus is on the untargeted attack. As
we already have 12 targeted attacks presented in this paper
(6 mixed black-box and 6 pure black-box types) we leave the
targeted boundary attack as potential future work.

D. FUTURE WORK
There are several promising directions for possible future
work. From a security perspective, our paper has demon-
strated the effectiveness of image transformations for black-
box robustness. We experimented with a set of image trans-
formations that we found to be effective in creating barrier
zones. However, large scale studies on the transferability of
single and fixed combinational image transformations has
not yet been done, to the best of our knowledge. Deter-
mining exactly which image transformations are capable of
distorting adversarial noise while maintain robustness would

bring the field much closer to establishing a set of image
transformations as security primitives.

On the machine learning side, enhancement to the clean
accuracy of the BARZ defense may be possible through
the introduction of novel architectures. Specifically, the Big
Transfer Models [50] are a class of CNNs that have shown
remarkable performance on datasets like CIFAR-10 and
CIFAR-100. Using these new architectures could be one
possible way to improve the clean accuracy of the BARZ
defense.

On the attacker side in this work, we only consider an ad-
versary that is interested in misclassification (either targeted
or untargeted). The attacker starts with a clean example and
specifically tries to avoid having the sample marked with the
correct label or marked with the adversarial label. To the best
of our knowledge, work has not been extensively done on
what might be considered the inverse of this problem i.e.,
the attacker tries to overwhelm the system with legitimate
examples that are marked as adversarial. While an interesting
problem in its own right, this is beyond the scope of our
current work. It may be a problem future defense designers
would want to take into account and try to mitigate.

Lastly from the attacker side, optimizations can still be
made to the adaptive black-box attack. In our paper, we found
one simple CNN architecture (through experimentation) that
was both simple to train and yielded highly transferable
adversarial examples. However, it may still be possible to
optimize the architecture in the attack, to potentially increase
the attack success rate. In addition, as white-box attacks
continue to improve, it may be possible to substitute the
MIM adversarial generation method in the adaptive black-
box attack with an even stronger technique.
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