
ChieF : A Change Pattern based Interpretable Failure Analyzer

Dhaval Patel Lam M. Nguyen Akshay Rangamani Shrey Shrivastava Jayant Kalagnanam
IBM Thomas J. Watson Research Center

1101 Kitchawan Rd, Yorktown Heights, NY 10598
{pateldha@us.,LamNguyen.MLTD@,akshay.rangamani@,shrey@,jayant@us.}ibm.com

Abstract—Discovering the underlying dynamics leading up
to an industrial asset failure is an important problem to be
solved for successful development of Predictive Maintenance
techniques. Existing work has largely focused on building
complex ML/AI models for developing Predictive Maintenance
solution patterns, but has largely avoided developing methods
to explain the underlying failure dynamics. In this paper, we
use an old but significantly improved change-pattern based
technique to analyze IoT sensor data and failure information
to generate useful and interpretable failure-centric insight. We
discuss a solution pattern that we call ChieF, which when
applied on multi-variate time series datasets, discover the
leading failure indicators, generate associative patterns among
multiple features, and output temporal dynamics of changes.
Experimental analysis of ChieF on four datasets uncovers
insights that may be valuable for predictive maintenance.

Keywords-Change Pattern Algorithms; Failure-Centric
Knowledge Extraction; Data Analysis

I. INTRODUCTION

The immense growth in Industrial Internet of Things
(IIoT) software platforms1, such as Watson IoT platform,
Azure IoT, AWS IoT, has led to the automated collection
of large volumes of digitized data from smart devices in
industrial and manufacturing environment. Platforms such
as Maximo2, OSIPi3, etc., are providing smarter options to
connect people, data and systems in a seamless way. One of
the key problem these IIoT software platforms try to address
is to build an operational intelligence using data analytics.
Operational intelligence requirements for IoT applications
range from proactive maintenance to predictive and prescrip-
tive maintenance. Proactive maintenance finds anomalies
and identifies root causes using interactive and automatic
observation of IoT data. Whereas predictive maintenance
techniques for industrial applications aims to predict the top
risky assets, i.e., assets (or its component) that will fail in
the near future if preventive maintenance is not conducted.

Early work on predictive maintenance techniques use
SCADA4 data to monitor assets, and manual thresholds are
set based on subject matter expert’s knowledge. These tech-
niques trigger an alert when sensor data breach thresholds

1The Forrester Wave: Industrial IoT Software Platforms, Q3 2018
2https://www.ibm.com/products/maximo
3https://www.osisoft.com/
4Supervisory Control And Data Acquisition

and hence signal potential machine fault. With recent ad-
vancements in Machine Learning and Artificial Intelligence
(AI) techniques, industries are bringing various AI enabled
predictive maintenance solution patterns [1][2]. These so-
lution patterns utilize novel algorithms such as Remaining
Useful Life estimation [3][4], Failure Prediction in the near
future [5], and Anomaly Detection [6][7], among others for
predictive maintenance. Although these solution patterns are
scalable and deployable across various industries, the issue
of interpretability and actionable knowledge extraction for
predictive maintenance is largely unanswered and limited to
[8][9]. More specifically, end users are interested in failure-
centric data analysis such as the features responsible for
failures, how early these features show behavioral changes,
and what are the important relationship among features, etc.

Figure 1: The architecture flow of the system

In this paper we discuss a solution pattern, namely ChieF
(Change Pattern based interpretable Failure Analyzer), that
analyzes IoT sensor data and failure information from multi-
ple assets and provides a interpretable insight for data-driven
failure analysis. ChieF uses multiple state-of-the-art change
point detection methods on multi-variate time series data
[10][11][12], and associates the discovered change points
with failure labels for discovering interpretable failure-
centric knowledge. The computational procedure of the
ChieF approach is presented in Figure 1.

ChieF starts with application and evaluation of change
point detection methods to univariate and multivariate time

series data. The complexity of this task mainly depends on
the number of assets under consideration, number of sensor
variables and quality of the collected raw data. The next step
is Failure-centric Knowledge Extraction, which comprises
of leading indicator discovery, temporal analysis of change
points, and frequent pattern analysis for association study.
ChieF, as the name suggests, is designed to provide useful
information to the other existing solution patterns, as an
example, ChieF can help to identify a golden set of failure
samples to be used for building supervised model [1], etc.

To the best of our knowledge, a systematic framework for
analyzing and extracting failure-centric interpretable infor-
mation extraction using unsupervised change-pattern analy-
sis has not been proposed earlier. Our key contributions:

• Design and development of ChieF (Section II)
• Uses of univariate and multivariate change point detec-

tion models for performing analysis (Section III)
• Extension of univariate CUSUM to multi-variate

CUSUM (Section III-A)
• Adapted precision, recall and accuracy definition to in-

corporate the temporal window constraint (Section IV)
• Use of frequent pattern analysis for discovering Trans-

actional and Sequential patterns (Section VI-C)
• Conducted extensive experiment on four datasets from

different industries (Section VI)

II. CHANGE POINT BASED INTERPRETABLE FAILURE
ANALYZER

A. Input Data

This section discusses the detail of input data (See Fig-
ure 2) and the common notations used in the paper. Let
A = {A1, A2, . . . , AN} be a set of multi-variate sensor data
for N Assets, where Ai represents the multi-variate time
series for Asset i. We use Aji to refer the time series of
sensor variable j for Asset i, and Aj,ti is a value of sensor
variable j at time t for Asset i. Let F = {F1, F2, . . . , FN}
be an asset wise recorded failures, where Fi is a list of
time points when asset Ai fails. The failure information are
mostly extracted from maintenance records. Note that, the
granularity of failures varies from dataset to dataset, i.e.,
there are different types of failures for one component, or
there are different component failures. It is expected that the
time point of failures in F are aligned with sensor data A.

B. System Architecture

The ChieF system mainly performs the following three
things- discover change points in sensor data A, validate
the change point results with failures information F , and
generate change pattern analysis results.

The Change Point Detection module takes in the sen-
sor data and leverages various algorithms to generate the
changes points either at individual sensor level or at a time

Figure 2: Example of Input Data

series level. We selected three change point detection algo-
rithms namely CUSUM [10], Ruptures [11] and Gaussian
graphical model (GGM) [12] for this comparison.

The Change Point Evaluator module selects the change
point detection algorithm which performs best and examines
whether the discovered change points coincide with docu-
mented failure points. We evaluate this performance using
three evaluation measures discussed in Section IV. These
measures are adjusted to accommodate the temporal nature
of change point detection output.

The final Failure-Centric Knowledge Extraction module
post-processes the outputs of change point detection algo-
rithms to generate the insightful and interpretable results.
In particular, we aim to discover leading sensor indicators
using univariate analysis, identify associative and sequential
failure patterns using frequent pattern mining approach, and
conduct multivariate change point analysis. Moreover, this
module also conducts the temporal analysis of discovered
change point in order to identify the appropriate time win-
dow for failure detection.

III. CHANGE POINT DETECTION MODULE

Change points detection algorithms can either be univari-
ate or be multi-variate. The univariate change point methods
operate on time series of single feature, and outputs the
change point only for that feature. For a multi-variate time
series data, the univariate algorithms can be applied on each
feature independently. On the other hand, the multi-variate
change point detection methods incorporate the relationship
between multiple features, and generate the change point at
time series level or at attribute-level. Given a multi-variate
data with K variables and length L, Figure 3 describes two
different outputs that can be generated by different change
point detection algorithms. The output is binary matrix of
size either K x L (attribute-wise change point) or 1 x L
(time-series change point), with value 1 indicating a change
point.

We include three methods in our framework- GGM,
Ruptures, and CUSUM. GGM can only work with multi-

Figure 3: Comparing output of the methods

variate dataset while the other two methods can work with
both univariate and multi-variate datasets. In Figure 3, we
also include the name of algorithms based on the kind of
output they can produce. In the further sections, we will
show how our framework provides flexibility to model the
multi-variate data as it is or as a set of univariate time series.

A. CUSUM

The CUSUM method [10] is a univariate change point
detection method based on statistical process control charts.
CUSUM is widely used technique to monitor the change
point in univariate time series data that show a subtle shift
in the mean relative to the context of the time series itself. As
name suggest, CUSUM uses cumulative sum of changes to
monitor the change in time series. In Equation 1, Scorej,ti is
a CUSUM signal value at time point t for Asset i and sensor
feature j. When the value of cumulative change exceeds a
certain threshold value, denoted as cusum threshold, we
reset Scorej,ti to zero, and declare a change has been found
at time point t.

Scorej,ti = Scorej,t−1i + (Aj,ti −A
j,t−1
i). (1)

The value of cusum threshold decides the number
of discovered change points. In this paper, we provide
three alternatives to choose cusum threshold: “q75”,
“max”, and “min”. The option “q75” is the value at 75th
percentile of given time series; option ‘max’(’min’) is the
the maximum (minimum) value of the absolute difference
between two consecutive points in time series. Since, we
use the entire time series to decide the value of the above
three options, we refer current CUSUM method as an
off-line approach.

Multi-variate CUSUM: We also extend CUSUM method
to work with multivariate data. Figure 4 gives a high level
overview of involved steps. First, we detect the change
points using univariate CUSUM for each feature. Next, we
observe whether the change points from multiple features
are detected in temporal window of pre-defined length. In
our example, we have shown four temporal windows along
with the number of change points discovered across the
features. If at least num feature choice (integer value)

features have change points in given temporal window, we
mark that a change point is detected, and then choose the
latest change as the common change point of all features.
In the Figure 4 example, we detected two changes points.

Figure 4: Working of multivariate CUSUM

B. Ruptures

Ruptures is a Python library for off-line change point
detection [11]. This method can work with univariate as well
as multivariate data. Ruptures requires user to specify the
number of change points to be detected beforehand.

The working of our proposed approach for multi-variate
data Ai goes as follow: we apply a window-based change
point detection method on Ai with the fixed temporal
window length 30 and `2 penalty. In window-based change
detection, two adjacent temporal windows of equal lengths
are compared to calculate the discrepancy score. Intuitively,
the discrepancy score compares how similar the observations
in both the windows. In (2), the discrepancy score at time
point t is calculated using two adjacent windows A:,t−w:t

i

and A:,t:t+w
i is given, where A:,t−w:t

i be the temporal
window of length w starting from time point t − w and
involve all the features of asset Ai.

Score:,ti = Score(A:,t−w:t
i , A:,t:t+w

i) =

F (A:,t−w:t+w
i)− F (A:,t−w:t

i)− F (A:,t:t+w
i).

(2)

The function F (A:,t−w:t+w
i) for l2 penalty function is

defined as follow, where A:,t:t+w
i is a mean value of time

segment A:,t:t+w
i .

F (A:,t:t+w
i) =

∑
t∈[t,t+w]

||A:,t
i −A

:,t:t+w
i ||22. (3)

The above discrepancy score is calculated at various time
points on the time series of each assets. Once the dis-
crepancy score is calculated for entire time series, Rupture
optimally select the pre-specified number of locations, given
by rupture threshold, using peak detection algorithm as
a change points. Note that, Score:,ti is at time series level.
Similarly, we can also calculate the score Scorej,ti using
univatiate time series Aji

C. Gaussian Graphical Model (GGM)

Gaussian Graphical Model, in short GGM [12], is a multi-
variate technique. This method uses the multidimensional
Gaussian distribution to learn a graphical model that explains

the relationship between sensor variables. In a graphical
model, the nodes are sensor variables and the edges en-
code the conditional dependence structure between random
variables. In order to capture the most salient dependencies
among variables, GGM discovers a sparse dependency ma-
trix, i.e., many entries in the matrix will be zero, and non-
zero entries represents the strength of dependency between
two variables. To generate the sparse matrix, there exists
various sparsifying formulations such as Graphical Lasso
(`1) method, `0 method, etc. In this paper, we use Graphical
Lasso (`1) method [12] to generate the sparse matrix.

We use GGM method to detect the change points as
follows: we first apply GGM method on input multi-variate
data Ai to discover the sparse precision matrix Mi. Next, we
use Mahalanobis distance measure to find out the distance
between every sample A:,t

i in input data Ai with respect
to the learned matrix Mi. The following equation gives a
formula to calculate the score for asset Ai at time t based
on Mahalanobis distance, where symbol � refers to element-
wise product of vectors, and A:,t

i is mean normalized vector.

Score:,ti = Score(A:,t
i ,Mi) =

∑
((A:,t

i ·Mi) � A:,t
i).

It is expected that the score is very high near the
change point. Thus, we introduce the user defined parameter,
ggm threshold, to control the number of change points
to be discovered. Our method selects ggm threshold time
points in input data where the calculated score is high and
marks them as a change points.

IV. CHANGE POINT EVALUATOR

The objective of the Change Point Evaluator module is
to evaluate the output of different change point algorithms
with respect to the ground truth failure F . Let C =
{C1, C2, . . . , CN} be asset wise predicted change points
from a method M , where Ci is a list of time points where
change for asset Ai is observed. The change point evaluator
compares the detected change point Ci with reported failures
Fi, and obtain an average value over all the assets as follow:

Φ(m) =
1

N
×

N∑
i=1

Eval(Ci, Fi, δ). (4)

The definition of Eval(Ci, Fi, δ) is based on the following
intuition. The change points should precede the failure
events, i.e., change point method should detect changes
“slightly early” than the real failures. We formulate three dif-
ferent evaluation score namely, Window Precision, Window
Recall, and Window F1-Score. All these score definition use
temporal window (δ) to account the “slightly early” nature
of detected change points while comparing with the ground
truth failures.

A. Window Precision

This score determines how accurate the detected change
points. It is the ratio of the number of change points in Ci
that can be associated with ground truth failure Fi using
threshold δ to the total number of change points in Ci. It is
given as follow:

WPrecisioni = |PRel(Ci,Fi,δ)|
|Ci| ,

PRel(Ci, Fi, δ) = {c ∈ Ci | (∃f ∈ Fi) ∧ (f − c) > 0

= ∧ 0 < (f − c) ≤ δ}.

B. Window Recall

This score calculates failure coverage, i.e., % of detected
failures. It is the ratio of the number of failures in Fi that
are discovered by change point output Ci using threshold δ
to the total number of failures in Fi. It is given as follow:

WRecalli = |RRel(Ci,Fi,δ)|
|Fi| ,

RRel(Ci, Fi, δ) = {f ∈ Fi | (∃c ∈ Ci) ∧ (f − c) > 0

= ∧ (f − c) ≤ δ}.

C. Window F1 Score

Window F1 Score is the harmonic average of window
precision and window recall, i.e.

WF1i = 2 WPrecisioni·WRecalli
WPrecisioni+WRecalli

.

V. EXPERIMENTAL DATASET

In this paper, we utilize four multi-asset datasets of
multivariate time series. Table I gives a short summary of
their properties. Datasets are taken from diverse industries,
with different sizes, frequency of failures and data quality
(missing data, etc).

Table I: Datasets Description

Name (Industries) Assets Sensors Failures Timesteps
per Asset

Dataset-I (Telemachine) 1000 4 6368 8761
Dataset-II (Jet Engines) 709 21 709 128-543

Dataset-III (Gas Industries) 676 20 519 1000
Dataset-IV (Hard drives) 363 63 363 2-299

Dataset-I is a large-scale simulated dataset5, and contains
measurements from machines taken during the course of its
operation for a year. There are four sensor variables namely
voltage, pressure, rotation, and vibration. This dataset does
not have any missing readings. There are a total of 1000
machines, and each machine has hourly measurements taken
over one year, resulting in 8761 timesteps per machine.
Each machine undergoes a failure if one or more of it’s
four components fail. There are a total of 6368 failures
in the dataset. The component level failure distribution
is as follow: 1886 (Component 1), 2587 (Component 2),

5https://github.com/Microsoft/SQL-Server-R-Services-
Samples/tree/master/PredictiveMaintanenceModelingGuide/Data

1012 (Component 3), and 1241 (Component 4). We analyze
failures of the individual components as well as that of each
machine as a whole.

Dataset-II is publicly available Turbofan Engine Degra-
dation Simulation Data Set6. This data is widely used in
many academic and industrial studies [3]. This dataset has
total 24 features: 3 variable related to engine “settings”, and
remaining 21 are sensor features. Also, data does not have
any missing values. There are a total of 709 engines, and
each engine has between 128 and 543 measurements. Most
engines have around 200 measurements. Each engine under-
goes a failure at the end of a cycle of measurements, making
up a total of 709 failures in the dataset. The 709 engines are
actually distributed among four different sub-datasets, which
differ in the types of testing conditions that the engines are
subjected to during the operation. Sub-Datasets Dataset-II1
and Dataset-II3 contain 100 engines each and tested under
a single condition. Sub-Datasets Dataset-II2 and Dataset-II4
contain 260 and 249 engines respectively, and tested under
six conditions during its operations.

Dataset-III contains measurements from oil pumps over
a period of approximately three years with measurements
being made once a day, which means there are about 1000
measurements per assets. The measurements are multivariate
recordings from 20 different sensors. The dataset also has
missing values. Each sensor is missing around 22%-26% of
the total number of samples. This may be due to a variety of
reasons, including asset failure. In our change point detection
process, we deal with the missing values in a naive way, by
simply dropping the timesteps which are not recorded. This
dataset has 676 different assets, and there are more than 500
instances of failures. This means that a number of assets in
the dataset do not undergo failure.

Dataset-IV contains 63 smart features collected from 300+
hard drives7. The recording of smart features were started
at arbitrary time points, and stopped when the hard drives
fails entirely. The recording of smart features were originally
varying temporal granularity. We re-sampled data at an
interval of one hours, and the dataset does not have any
missing values. On an average, 180 recordings are performed
for each hard drives, and we only retain those hard drives
for which we have atleast 48 recordings after re-sampling.

VI. FAILURE-CENTRIC KNOWLEDGE EXTRACTION

We conduct experiments to discover insights using uni-
variate and multivariate change point detection methods.

A. Leading Failure Indicator Discovery

We perform univariate analysis on each sensor features
using four different methods: Ruptures, CUSUMmin,
CUSUMmax and CUSUMq75. This analysis generates
feature wise evaluation measures for each method and for

6https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/
7https://github.com/badlogicmanpreet/htm-drivefailures

each dataset. For example, Table IIa-IIe are sample output
generated for Dataset-I having failures from different com-
ponents. We selected Dataset-I, as it has only four sensor
variables for detail analysis.

Dataset-I: Using experimental results shown in Table IIa,
we inferred that variable “voltage” is a candidate for leading
indicator for Component 1 failures. Other features do not
have strong signal in prefailure window, i.e., the time before
the failure happens. Although, CUSUM based approaches
have higher WRecall, the performance of Ruptures is con-
sidered better due to higher WPrecision. Similarly, Tables
IIb-IId are prepared using Dataset-I for different component
failures. In Dataset-I an interesting phenomenon that we
observed was that the best leading indicator was different
for each component, with each of the sensors seeming to
monitor a specific component. For example, feature “rota-
tion” is leading failure indicators for Component 2 related
failures, whereas feature “pressure” is for Component 3
related failures, etc. Ruptures is best suited to discovering
change points with reasonable precision and recall. In Table
IIe, we obtain the performance evaluation with respect to all
the failures. Since, assets may encounter multiple component
failures, CUSUM algorithm is also competitive to Ruptures
when we put multiple failures together.

Dataset-II: Table III presents the summary of results
obtained for Jet engine data Dataset-II. To better utilize the
space, we highlighted the best algorithm for each feature
with respect to the evaluation parameter. For example, for
feature “s2”, Ruptures has the best WPrecision(0.82),
CUSUMmax has the best WRecall(1.0), etc. We noted that,
Ruptures based change point detection method performs
best for Dataset-II1 (and also Dataset-II3). But, CUSUM
works better on Dataset-II2 (and also Dataset-II4). Note
that, the performance on Dataset-II2 and Dataset-II4 is
poor compared to Dataset-II1 and Dataset-II3. The poor
performance for Dataset-II2 and Dataset-II4 can be validated
based on dataset description given in Section V. Briefly, the
engines were operated under different testing conditions for
Dataset-II2 and Dataset-II4. This is also evident from the
value of feature “setting1”. The value of “setting1” stay
same for Dataset-II1 and Dataset-II3, while in Dataset-II2
and Dataset-II4, the same setting changes, leading to a lot
more potential change points being identified. This might
hurt the precision of the Ruptures algorithm that we use. It
seems to be the case that when the time series one is dealing
with has a high frequency, CUSUM is a more desirable
change point detection method with fewer false positives

Other Datasets: Experiments on Dataset-III suggests
Ruptures achieve best results and identified three lead-
ing indicators out of 20 features. The evaluation result
for the top-most leading indicator is 0.105(WPrecision),
0.494(WRecall), and 0.134(WF1). In Dataset-IV however,
CUSUMq75 based analysis seems to perform best. The top
leading indicator is ”Servo2”, which has a WPrecision 0.204,

Table II: Univariate Feature Analysis: Dataset-I
(a) Component 1 Failures

Sensor Ruptures CUSUMmin CUSUMmax CUSUMq75

WPrecision WRecall WF1 WPrecision WRecall WF1 WPrecision WRecall WF1 WPrecision WRecall WF1
voltage 0.212 0.516 0.275 0.052 0.9 0.095 0.051 0.875 0.094 - 0 0
pressure 0.036 0.078 0.044 0.034 0.631 0.063 0.035 0.626 0.064 0.043 0.003 0.003
rotation 0.033 0.084 0.042 0.033 0.646 0.06 0.033 0.654 0.062 0.047 0.001 0.001
vibration 0.039 0.086 0.048 0.036 0.667 0.066 0.035 0.657 0.065 0.033 0.013 0.013

(b) Component 2 Failures
Sensor Ruptures CUSUMmin CUSUMmax CUSUMq75

WPrecision WRecall WF1 WPrecision WRecall WF1 WPrecision WRecall WF1 WPrecision WRecall WF1
voltage 0.054 0.089 0.063 0.049 0.661 0.088 0.049 0.641 0.088 - 0 0
pressure 0.051 0.084 0.058 0.047 0.635 0.084 0.047 0.632 0.085 0.022 0.001 0.001
rotation 0.276 0.503 0.33 0.074 0.92 0.133 0.073 0.92 0.131 0.31 0.006 0.008
vibration 0.044 0.069 0.049 0.047 0.652 0.085 0.048 0.64 0.086 0.048 0.014 0.016

(c) Component 3 Failures
Sensor Ruptures CUSUMmin CUSUMmax CUSUMq75

WPrecision WRecall WF1 WPrecision WRecall WF1 WPrecision WRecall WF1 WPrecision WRecall WF1
voltage 0.018 0.079 0.019 0.018 0.665 0.032 0.019 0.667 0.033 - 0 0
pressure 0.109 0.472 0.114 0.03 0.969 0.053 0.03 0.973 0.053 0.215 0.029 0.035
rotation 0.015 0.069 0.016 0.019 0.664 0.034 0.019 0.686 0.034 0 0 0
vibration 0.017 0.074 0.017 0.019 0.676 0.034 0.019 0.698 0.034 0.014 0.013 0.007

(d) Component 4 Failures
Sensor Ruptures CUSUMmin CUSUMmax CUSUMq75

WPrecision WRecall WF1 WPrecision WRecall WF1 WPrecision WRecall WF1 WPrecision WRecall WF1
voltage 0.022 0.078 0.023 0.024 0.671 0.042 0.023 0.654 0.04 - 0 0
pressure 0.025 0.082 0.025 0.023 0.637 0.041 0.022 0.616 0.038 0.022 0.002 0.002
rotation 0.024 0.083 0.025 0.023 0.659 0.041 0.023 0.669 0.04 0.023 0.001 0.001
vibration 0.126 0.456 0.133 0.036 0.952 0.063 0.036 0.95 0.063 0.099 0.073 0.049

(e) All Component Failures
Sensor Ruptures CUSUMmin CUSUMmax CUSUMq75

WPrecision WRecall WF1 WPrecision WRecall WF1 WPrecision WRecall WF1 WPrecision WRecall WF1
voltage 0.282 0.2111 0.224 0.134 0.739 0.217 0.134 0.715 0.216 - 0 0
pressure 0.203 0.123 0.145 0.127 0.673 0.203 0.126 0.667 0.203 0.285 0.005 0.008
rotation 0.322 0.247 0.262 0.141 0.765 0.229 0.14 0.773 0.228 0.333 0.002 0.004
vibration 0.207 0.127 0.149 0.13 0.705 0.211 0.13 0.698 0.21 0.179 0.022 0.032

Table III: Leading Feature Indicator Discovery on Jet Engine (Dataset-II)
(a) Dataset-II1

Feature WPrecision WRecall WF1
s1 - 0 0
s2 Ruptures1(0.82) CUSUMmax(1.00) Ruptures1(0.82)
s3 Ruptures1(0.79) CUSUMmax(1.00) Ruptures1(0.79)
s4 Ruptures1(0.95) CUSUMmax(1.00) Ruptures1(0.95)
s5 - 0 0
s6 Ruptures(0.018) Ruptures(0.03) Ruptures(0.015)
s7 Ruptures1(0.89) CUSUMmax(1.00) Ruptures1(0.89)
s8 Ruptures1(0.89) CUSUMmax(1.00) Ruptures1(0.89)
s9 Ruptures1(0.76) CUSUMmin(1.00) Ruptures1(0.76)
s10 - 0 0
s11 Ruptures1(0.99) CUSUMmax(1.00) Ruptures1(0.99)
s12 Ruptures1(0.96) CUSUMmax(1.00) Ruptures1(0.96)
s13 Ruptures1(0.88) CUSUMmax(1.00) Ruptures1(0.88)
s14 Ruptures1(0.88) Ruptures(0.99) Ruptures1(0.88)
s15 Ruptures1(0.94) CUSUMmin(1.00) Ruptures1(0.94)
s16 - 0 0
s17 Ruptures1(0.81) CUSUMmax(0.97) Ruptures1(0.81)
s18 - 0 0
s19 - 0 0
s20 Ruptures1(0.85) CUSUMmax(1.00) Ruptures1(0.85)
s21 Ruptures1(0.91) CUSUMmax(1.00) Ruptures1(0.91)

(b) Dataset-II2
Feature WPrecision WRecall WF1

s1 CUSUMmin(0.667) Ruptures(0.85) Ruptures(0.403)
s2 CUSUMmax(0.507) CUSUMmin(0.992) CUSUMmin(0.645)
s3 CUSUMmax(0.444) CUSUMmin(0.992) CUSUMmin(0.591)
s4 CUSUMmax(0.497) CUSUMmax(0.996) CUSUMmax(0.642)
s5 CUSUMmin(0.667) CUSUMq75(1.00) CUSUMq75(0.527)
s6 Ruptures1(0.285) CUSUMq75(1.00) CUSUMq75(0.527)
s7 CUSUMq75(0.371) CUSUMq75(1.00) CUSUMq75(0.528)
s8 CUSUMmin(0.499) Ruptures(0.869) CUSUMmin(0.561)
s9 CUSUMmax(0.47) CUSUMmin(0.988) CUSUMmax(0.611)

s10 CUSUMmin(0.634) Ruptures(0.862) Ruptures(0.39)
s11 CUSUMmax(0.506) CUSUMmax(1.000) CUSUMmax(0.65)
s12 CUSUMq75(0.371) CUSUMq75(1.00) CUSUMq75(0.527)
s13 CUSUMmax(0.679) CUSUMmin(0.973) CUSUMmin(0.748)
s14 CUSUMmax(0.42) CUSUMmin(0.962) CUSUMmax(0.559)
s15 CUSUMmax(0.482) CUSUMmax(1.000) CUSUMmax(0.633)
s16 Ruptures1(0.412) Ruptures(0.858) Ruptures(0.426)
s17 CUSUMmax(0.516) CUSUMmax(0.985) CUSUMmax(0.646)
s18 CUSUMmin(0.384) Ruptures(0.869) Ruptures(0.411)
s19 Ruptures(0.258) Ruptures(0.785) Ruptures(0.377)
s20 Ruptures1(0.296) Ruptures(0.842) Ruptures(0.4)
s21 Ruptures1(0.288) Ruptures(0.835) Ruptures(0.394)

WRecall 0.971 and WF1 0.285.
In summary, some datasets are easier, i.e., we are able to

detect some signal in timeseries in a fixed window before a
failure occurs. For example, Dataset-II1 and Dataset-II3, we
are able to achieve nearly 99% precision with 99% recall.
But, signal seems to be weaker in other datasets. As a result,
we should expect that failure prediction in Datasets-I, III,
and IV will be harder than in Dataset-II. We note that the

change point detection algorithm that performs best depends
on the characteristics of the dataset, and there seems to be
no one algorithm that performs best in all situations.

B. Multivariate Change Point Analysis

We perform multivariate analysis on each dataset using
GGM, CUSUMmin, CUSUMmax, CUSUMq75 and Rup-
tures. To conduct detailed in-depth experimental analysis,

we prepared three different set of features (when feasible)
for multi-variate analysis: (a) All-features, (b) Top-5 leading
indicators, and (c) Top-10 leading indicators. The multivari-
ate analysis generates evaluation measures for each method
and for each feature subsets. To highlights the benefits of
conducting multi-variate analysis over univariate analysis,
we also used result of Top-1 leading indicators as a baseline.

Dataset-I:. We skip Top-5 and Top-10 analysis for
Dataset-I, as it has only four features. To provide the sum-
mary of experimental outcome using All-features option, we
selected the best method for each component failures. The
best method is selected using WF1 score. Table IV shows
the result. We noticed that the performance for Component
1, Component 3 and Component 4 is not as good as the one
we used to obtain using univariate feature analysis. This
is expected as the univariate analysis suggested a one to
one correspondence between failure and the sensor feature.
Mixing an extra additional information does not improve the
result. However, for Component 2 and All-failure ground
truth, the performance are comparable with univariate anal-
ysis. This surprise behavior is possibly due to dominant role
of feature “rotation” or due to the majority failures are from
Component 2. Note that, there is a greater correspondence
between the univariate and multivariate results. In particular,
there is a nearly 90% overlap between the change point
generated using univariate and multivariate features.

Table IV: Multi-variate Analysis on Dataset-I

Failure Types Best Method WPrecision WRecall WF1
Component 1 CUSUMmax 0.051 0.116 0.053
Component 2 Ruptures/GGM 0.276 0.501 0.329
Component 3 CUSUMmax 0.034 0.159 0.032
Component 4 CUSUMmin 0.038 0.132 0.034
All Component Ruptures/GGM 0.357 0.215 0.244

Dataset-II:. Table V presents summary of multi-variate
analysis for Dataset-II1 and Dataset-II2. We observed that,
Top-10 feature option performs better than the Top-5
and All-Feature options. Recall, the univariate analysis on
Dataset-II (Table III) also suggests that nearly 10 features
has good performance out of 21 sensor features. As a result,
mixing top-10 leading indicators and conducting multi-
variate analysis has helped to improve the performance.
The performance of best multi-variate analysis method on
Dataset-II1 is comparable to univariate analysis, whereas for
Dataset-II2 the performance is improved (WF1 = 0.721).
We also noticed that, GGM based method achieve 0.811
WF1 score using Top-5 features when we set the number of
change points to be detected to 5.

Other Datasets: For Dataset-III, the multi-variate anal-
ysis using Top-5, Top-10 and All-Feature options does
not bring any improvement compared to univarate anal-
ysis. This is due to fact that, the leading indicators are
highly dependents on each other based on domain input. In
multi-variate experiments on Dataset-IV, there is a marked

Table V: Multi-variate Analysis on Dataset-II

Failure Types Best Method WPrecision WRecall WF1
Dataset-II1

All Ruptures 0.98 0.98 0.98
Top-5 Ruptures 0.95 0.95 0.95
Top-10 Ruptures 0.99 0.99 0.99

Dataset-II2
All CUSUMmax 0.369 1 0.53
Top-5 CUSUMmin 0.454 1 0.611
Top-10 CUSUMmax 0.592 1 0.721

Table VI: Summary of Association Patterns

Association Patterns Dataset Support
Transactional [’s11’, ’s12’] Dataset-II1 32

[’s21’, ’s5’, ’s6’] Dataset-II2 62
Sequential {’s11’ → ’s17’} Dataset-II1 43

{[’s12’, ’s7’] → [’s15’]} Dataset-II3 33

improvement in the performance over univariate features.
Using CUSUMq75, we get a WF1 0.265 with WPrecision
0.187 and WRecall 0.99. The GGM based change point
detection method is also competitive with a WF1 0.21. In
summary, the complex datasets like Dataset-II and Dataset-
III, the multivariate GGM method seems to boost the overall
change point detection performance, suggesting that the time
series cannot be simply modeled using linear method.

C. Multivariate Association Analysis

We perform frequent pattern analysis on change points
generated by univariate method. First, we discuss the format
of input data needed for analysis. For each failure Fi in a
given dataset, we identify a list of univariate change points
that precede failure Fi. To restrict the temporal locality, we
impose an additional constraint saying that “duration before
failure” should be less than a predefined threshold.

The frequent pattern analysis is a multivariate tech-
nique that aims to generate association relationship be-
tween discovered change points across multiple features.
The two most common forms of association patterns are
“Transactional” and “Sequential”. In Transactional pattern,
the change points in various features are observed at the
same time whereas the sequential pattern has change points
that are ordered in time. Table VI provides an examples
of association patterns. The transactional pattern [s11, s12]
with Support 32 means, we observed 32 different failures in
Dataset-II1 that exhibits change in s11 and s12 at the same
time. On the other hand, sequential pattern {’s11’ → ’s17’}
with Support 43 means, we observed 43 different failures in
Dataset-II1 that exhibits change first in s11 and followed by
change in s17. We have used Ruptures method to generate
the change points for each feature, and then PrefixSpan
algorithm [13] to generates the association patterns.

Dataset-I to Dataset-IV: We applied multivariate associ-
ation analysis on all four datasets. We discover all frequent
association patterns having support higher than 30 as well
involve at-least two different features. Table VII shows the
number of patterns that are generated per dataset. We noticed
that Dataset I and IV do not generate any patterns. This

Table VII: Multivariate Analysis using All-Features

Dataset Dat-II1 Dat-II2 Dat-II3 Dat-II4 Dat-III
of Trans. Patterns 11 1623 30 305 9
of Seq. Patterns 79 0 70 0 0

is expected as for this study since they are not suitable
for multivariate analysis. We also noticed that, the number
of transactional patterns are significantly higher than the
sequential patterns. Indirectly, it suggests that change points
across multiple features happen at same time.

Since association patterns are easy to understand, the
multivariate association analysis provides an interpretable
output of change point method.

D. Temporal Change Point Analysis

We study how early change points are discovered with
respect to the failures. For example, it is possible that a
leading indicator exhibits changes just few minutes prior to
the failures, but another feature can detect changes much
earlier but at the cost of performance. In this section, we
perform temporal analysis of univariate change points. For
each sensor feature Si in dataset, we calculate average, count
and deviation using “duration before failure” value.

Dataset-I to Dataset-IV: In Dataset-I with Component
1 Failure, feature “Voltage” normally change around 32
hours prior to failures. Change in other features also happen
around same time, but their count is very less. Figure 5 show
temporal analysis on Dataset-II2. We noticed that the Setting
related variables are at centered around 35 cycles before fail-
ures and remaining features are between 20-30 cycles before
failures. For Dataset-III, we noticed that the leading indicator
changes around 7 day before the failures, but, the another
variable with slightly less accuracy change around 10 day
ahead. Dataset-IV have several features change around 30
hours prior to failures. In summary, leading indicators are
accurate as they are close to failures.

Figure 5: Temporal Analysis : Dataset-II2

VII. CONCLUSION

In this paper, we discussed the design and development
of ChieF solution pattern to be used as a part of Predic-
tive Maintenance techniques. We explained three change

point detection algorithms, namely CUSUM, Ruptures, and
GGM in detail and also provided a way to extract the
useful knowledge by associating the failure information.
The solution is extensively tested on four different datasets
and experimental results are encouraging. In the future, we
would like to utilize the system to conduct the user study
to validate the real usefulness of the proposed system in
building knowledge model.

REFERENCES

[1] “Predictive maintenance solution accelerator overview,”
https://docs.microsoft.com/en-us/azure/iot-accelerators/
iot-accelerators-predictive-walkthrough, 2018-08-18.

[2] “GE’s predictive solution,” https://www.predix.io/catalog/
analytics, 2018-08-18.

[3] L. Yongxiang, S. Jianming, W. Gong, and L. Xiaodong, “A
data-driven prognostics approach for rul based on principle
component and instance learning,” in Prognostics and Health
Management (ICPHM), 2016 IEEE International Conference
on. IEEE, 2016, pp. 1–7.

[4] K. Medjaher, D. A. Tobon-Mejia, and N. Zerhouni, “Re-
maining useful life estimation of critical components with
application to bearings,” IEEE Transactions on Reliability,
vol. 61, no. 2, pp. 292–302, 2012.

[5] S. Nussbaum, N. Liberman, and Y. Trope, “Predicting the
near and distant future.” Journal of Experimental Psychology:
General, vol. 135, no. 2, p. 152, 2006.

[6] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection:
A survey,” ACM computing surveys (CSUR), vol. 41, no. 3,
p. 15, 2009.

[7] A. Zimek, E. Schubert, and H.-P. Kriegel, “A survey on
unsupervised outlier detection in high-dimensional numerical
data,” Statistical Analysis and Data Mining: The ASA Data
Science Journal, vol. 5, no. 5, pp. 363–387, 2012.

[8] “LIME - local interpretable model-agnostic explanations,”
https://homes.cs.washington.edu/∼marcotcr/blog/lime/, 2018-
08-18.

[9] J. Krause, A. Perer, and E. Bertini, “Using visual analytics to
interpret predictive machine learning models,” in 2016 ICML
Workshop on Human Interpretability in Machine Learning,
2016.

[10] A. Pettitt, “A simple cumulative sum type statistic for
the change-point problem with zero-one observations,”
Biometrika, vol. 67, no. 1, pp. 79–84, 1980.

[11] C. Truong, L. Oudre, and N. Vayatis, “Ruptures: change point
detection in python,” arXiv preprint arXiv:1801.00826, 2018.

[12] J. Friedman, T. Hastie, and R. Tibshirani, “Sparse inverse
covariance estimation with the graphical lasso,” Biostatistics,
vol. 9, no. 3, pp. 432–441, 2008.

[13] “PrefixSpan: Mining sequential patterns efficiently by prefix-
projected pattern growth,” in Proceedings of the 17th Interna-
tional Conference on Data Engineering, ser. ICDE ’01. IEEE
Computer Society, 2001, pp. 215–.

https://docs.microsoft.com/en-us/azure/iot-accelerators/iot-accelerators-predictive-walkthrough
https://docs.microsoft.com/en-us/azure/iot-accelerators/iot-accelerators-predictive-walkthrough
https://www.predix.io/catalog/analytics
https://www.predix.io/catalog/analytics
https://homes.cs.washington.edu/~marcotcr/blog/lime/

	Introduction
	Change Point based interpretable Failure Analyzer
	Input Data
	System Architecture

	Change Point Detection Module
	CUSUM
	Ruptures
	Gaussian Graphical Model (GGM)

	Change Point Evaluator
	Window Precision
	Window Recall
	Window F1 Score

	Experimental Dataset
	Failure-Centric Knowledge Extraction
	Leading Failure Indicator Discovery
	Multivariate Change Point Analysis
	Multivariate Association Analysis
	Temporal Change Point Analysis

	Conclusion
	References

