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ABSTRACT
We consider a service system where agents (or, servers) are
invited on-demand. Customers arrive as a Poisson process
and join a customer queue. Customer service times are i.i.d.
exponential. Agents’ behavior is random in two respects.
First, they can be invited into the system exogenously, and
join the agent queue after a random time. Second, with
some probability they rejoin the agent queue after a service
completion, and otherwise leave the system. The objective is
to design a real-time adaptive agent invitation scheme that
keeps both customer and agent queues/waiting-times small.
We study an adaptive scheme, which controls the number of
pending agent invitations, based on queue-state feedback.

We study the system process fluid limits, in the asymp-
totic regime where the customer arrival rate goes to infin-
ity. The fluid limit trajectories have complicated behavior –
there are two domains where they follow different ODEs, and
a “reflecting” boundary. We use the machinery of switched
linear systems and common quadratic Lyapunov functions
to approach the stability of fluid limits at the desired equilib-
rium point (with zero queues). We derive sufficient local sta-
bility conditions for the fluid limits. We conjecture that, for
our model, local stability is in fact sufficient for global stabil-
ity of fluid limits; the validity of this conjecture is supported
by numerical and simulation experiments. When the local
stability conditions do hold, simulations show good overall
performance of the scheme.

1. INTRODUCTION
We study a service system with exogenously arriving cus-

tomers, and servers, called agents, which can be invited to
join the system at any time. The system control needs to
match the arriving customers with invited agents, with the
objective to minimize waiting times of both customers and
agents. What makes this problem non-trivial is the fact that
there is uncertainty in the agents’ behavior. First, invited

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

WOODSTOCK ’97 El Paso, Texas USA
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4266-7/16/06.

DOI: http://dx.doi.org/10.1145/2896377.2901484

agents do not arrive into the system immediately; instead
they join the system after a random delay. Second, after
an agent is done serving a customer, it can either leave the
system or return to serve more customers.

This model (described in more detail below) is a gener-
alization of that in [19, 13]. It was originally motivated
(see [19]) by applications to call/contact centers, where what
we call agents are “special agents”, or “knowledge workers,”
whose time is expensive, so that it is inefficient to have them
working fixed shifts, with inevitable periods of idle time due
to random fluctuations in customer demand. It is much more
reasonable to invite them on-demand in real time; however,
designing an efficient agent invitation strategy is non-trivial
due to randomness in agent behavior. Besides efficiency (in
terms of minimizing customer and agent waiting times), an-
other highly desirable feature of the invitation scheme is
simplicity and robustness. (For a general discussion of mod-
ern call/contact centers and their management, see, e.g. [1,
12] and references therein.)

We note that the model we consider is generic and has
other applications, or potential applications. One example
is telemedicine [2], in which case“agents”are doctors, invited
on-demand to serve patients remotely. Another example is
crowdsourcing-based customer service [5, 3]. Also note that
the model has relation to classical assemble-to-order models,
where customers are orders and “invited agents” are prod-
ucts, which cannot be produced/assembled instantly. The
model is also related to “double-ended queues” (see e.g. [9,
11]) and matching systems (see e.g. [6]); although in such
models arrivals of all types into the system are typically ex-
ogenous, as opposed to being controlled.

More specifically, our model is as follows. Customers ar-
rive as a Poisson process and join a customer queue. Cus-
tomer service times are i.i.d. exponential. Agents’ behavior
is random in two respects. First, they can be invited into
the system exogenously, and join the agent queue after a
random time. Second, with some probability they rejoin the
agent queue after a service completion, and otherwise leave
the system. (This generalizes the model in [19, 13], where
the agents always leave the system after service completions,
thus making our model more realistic in many scenarios.)
The customer and agent queues cannot be non-empty si-
multaneously – the head-of-the-line customer and agent are
matched immediately and together go to service. The objec-



tive is to design a real-time adaptive agent invitation scheme
that keeps both customer and agent queues/waiting-times
small.

We study a feedback-based adaptive scheme of [19, 13],
which controls the number of pending agent invitations, de-
pending on the customer and/or agent queue lengths and
their changes. Due to the fact that our model is more gen-
eral, the system dynamics is substantially more complicated.

The system state can be described by three variables,
which are the number of pending invited agents, the dif-
ference between agent and customer queues, and the num-
ber of customers (or agents) in service. For the purposes
of analysis, it is more convenient to consider an alternative,
equivalent representation of the system state, which is also
described by three variables: the number of pending invited
agents, the difference between agent and customer queues,
and the total number of customers and agents in the system.

We consider the system in the asymptotic regime where
the customer arrival rate becomes large while the distribu-
tions of an agent response times and a service time are fixed.
We show convergence of the fluid-scaled process to the fluid
limit (Theorem 1). The fluid limit trajectories have compli-
cated behavior – there are two domains where they follow
different ODEs, and a “reflecting” boundary. This poses
big challenges for proving global stability of the fluid limits,
understood as the convergence of their trajectories to the
equilibrium point, at which the queues are zero.

Given that establishing global stability appears to be a
very difficult problem, the focus of this paper and our main
results concern the system local stability at the equilibrium
point, understood as the stability of the dynamic system
which describes fluid limit trajectories away from the bound-
ary. We use the machinery of switched linear systems and
common quadratic Lyapunov functions [10, 18] to obtain our
main results (Theorem 2 and 3), providing sufficient local
stability conditions. We conjecture that, for our model, lo-
cal stability is in fact sufficient for global stability of fluid
limits; the validity of this conjecture is supported by numer-
ical and simulation experiments.

Our simulation experiments also show good overall per-
formance of the feedback scheme when the local stability
conditions do hold.

1.1 Organization of the paper
Section 1.2 contains basic notations, conventions, and ab-

breviations. Some background facts on linear systems and
switched linear systems are given in Section 2. In Section
3, we describe the model in detail. In Section 4 we state
the main results of the paper. These results are proved in
Sections 5, 6 and 7. Numerical and simulation experiments
are described in Section 8; it also contains our conjectures
about global and local stability of fluid limits, supported by
these experiments. We conclude in Section 9.

1.2 Basic notations, conventions and abbrevi-
ations

Sets of real and real non-negative numbers are denoted by
R and R+; Rd and Rd+ are the corresponding vector spaces.

The standard Euclidean norm of a vector x ∈ Rn is de-
noted ‖x‖. For a vector a or matrix A, we write their trans-
poses as aT or AT . We write x(·) to mean the function (or
random process) (x(t), t ≥ 0). For a real-valued function
x(·) : R+ → R, we use either x′(t) or (d/dt)x(t) to denote
the derivative with respect to t, and for x(·) : R+ → Rd, we
write (d/dt)x(t) = (x′1(t), . . . , x′d(t)). For a real number x,
let x+ = max{x, 0} and x− = −min{x, 0} and let

sgn(x) =


1 , x > 0

0 , x = 0

−1 , x < 0

For x, y ∈ R, we denote x ∧ y = min{x, y} and x ∨ y =
max{x, y}. Symbol ⇔ means “equivalent to”. We write
xr → x ∈ Rn to denote ordinary convergence in Rn. For a
finite set of scalar functions fn(t), t ≥ 0, n ∈ N, a point t is
called regular if for any subset N0 ⊆ N, the derivatives

d

dt
max
n∈N0

fn(t) and
d

dt
min
n∈N0

fn(t)

exist. (To be precise, we require that each derivative is
proper: both left and right derivatives exist and are equal.)

Abbreviation u.o.c. means uniform on compact sets con-
vergence of functions, with the argument determined by the
context (usually in [0,∞)); w.p.1 means with probability 1 ;
i.i.d. means independent identically distributed ; RHS means
right hand side; FSLLN means functional strong law of large
numbers; CQLF means common quadratic Lyapunov func-
tion.

2. SOME BACKGROUND FACTS

2.1 Definitions and results related to switched
linear system

In this paper, we will use some machinery of switched lin-
ear systems. Here, we provide some necessary background.
Consider a switched linear system

ΣS : u′(t) = A(t)u(t) , A(t) ∈ A = {A1, . . . , Am} (1)

where A is a set of matrices in Rn×n, and t → A(t) is a
mapping from nonnegative real numbers into A. (Usually,
as in [18], this mapping is required to be piecewise constant
with only finitely many discontinuities in any bounded time-
interval. In our case this additional condition is not impor-
tant, because our switched system will have a continuous
derivative; see equation (10) below.) For 1 ≤ i ≤ m, the ith

constituent system of the switched linear system (1) is the
linear time-invariant (LTI) system

ΣAi : u′(t) = Aiu(t). (2)

The origin is an exponentially stable equilibrium of a
switched linear system Σs if there exist real constants C > 0,
a > 0 such that ‖u(t)‖ ≤ Ce−at‖u(0)‖ for t ≥ 0, for all so-
lutions u(t) of the system (1) under any A(t) (see [7, 18]).

A symmetric square n×n matrix M with real coefficients
is positive definite if zTMz > 0 for every non-zero column
vector z ∈ Rn. A symmetric square n × n matrix M with
real coefficients is negative definite if zTMz < 0 for every
non-zero column vector z ∈ Rn. A square matrix A is called
a Hurwitz matrix (or stable matrix) if every eigenvalue of A



has strictly negative real part (see [15]).

The function V (u) = uTPu is a quadratic Lyapunov func-
tion (QLF) for the system ΣA : u′(t) = Au(t) if (i) P is sym-
metric and positive definite, and (ii) PA+ATP is negative
definite. Let {A1, . . . , Am} be a collection of n× n Hurwitz
matrices, with associated stable LTI systems ΣA1 , . . . ,ΣAm .
Then the function V (u) = uTPu is a common quadratic
Lyapunov function (CQLF) for these systems if V is a QLF
for each individual system (see [10, 18]).

The following facts will be used in the proof of our results
(Theorem 2 and 3).

Proposition 1 ([10, 18]). The existence of a CQLF
for the LTI systems is sufficient for the exponential stability
of a switched linear system.

Proposition 2 ([10, 18]). Let A+ and A− be Hurwitz
matrices in Rn×n, and the difference A+−A− has rank one.
Then two systems u′(t) = A+u(t) and u′(t) = A−u(t) have
a CQLF if and only if the matrix product A+A− has no
negative real eigenvalues.

2.2 Stability of linear systems
The following facts will also be used in the proof of our

results (Theorem 2 and 3).

Proposition 3 ([15]). Let L(λ) = det(A− λI) = 0 be
the characteristic equation of matrix A:

L(λ) = a0λ
3 + a1λ

2 + a2λ+ a3 = 0 , a0 > 0. (3)

Matrix A is Hurwitz if and only if a1, a2, a3 are positive
and satisfy a1a2 > a0a3.

Proposition 4 ([8]). The general cubic equation has
the form

aλ3 + bλ2 + cλ+ d = 0 , a 6= 0, (4)

and discriminant

∆ = 18abcd− 4b3d+ b2c2 − 4ac3 − 27a2d2. (5)

If ∆ > 0, then the equation has three distinct real roots.
If ∆ = 0, then the equation has a multiple root and all its

roots are real.
If ∆ < 0, then the equation has one real root and two

nonreal complex conjugate roots.

Proposition 5 ([17]). If A1 is non-singular, the prod-
uct A−1

1 A2 has no negative eigenvalues if and only if A1 +
τA2 is non-singular for all τ ≥ 0.

3. MODEL AND ALGORITHM
Our model is a generalization of that considered in [19,

13]. Customers arrive according to a Poisson process of rate
Λ > 0, and join the customer queue waiting for an available
agent and are served in the order of their arrival. There is
an infinite pool of potential agents, which can be invited to
serve customers. Once being invited, an agent will respond
after an independent exponentially distributed random time,
with mean 1/β̃; it accepts the invitation with probability

a > 0, and otherwise rejects it. Let β = aβ̃ > 0 be the
rate at which an agent accepts the invitation. Agents who

accept their invitations join the agent queue, in the order
of their arrival. The customer and agent queues cannot be
positive simultaneously: the head-of-the-line customer and
agents are immediately matched, leave their queues, and to-
gether go to service. Each service time is an exponentially
distributed random variable with mean 1/µ; after the ser-
vice completion, the customer leaves the system, while the
agent rejoins the agent queue with probability α ∈ [0, 1).
Thus, there are two ways in which agents join the queue –
exogenously invited agents accepting invitations and agents
already in the system rejoining the queue after service com-
pletions. (The model in [19, 13] is a special case of ours,
with α = 0; in other words, the agents certainly leave the
system after service completions, and therefore there is no
need to account for agents being in service.)

Let X(t) be the number of pending agents that have been
invited but have not decided to accept or decline the invi-
tations at time t. Let Qc(t) be the number of customers
in the customer queue at time t. Let Qa(t) be the number
of agents in the agent queue at time t. And we also define
Y (t) = Qa(t) − Qc(t) as the difference of the agent queue
and customer queue at time t. Let Z(t) be the number of
customers (or agents) in service at time t. We assume that
the non-idling condition holds, that is, agents do not idle
when there are customers waiting in the customer queue,
which means that at each time t, either the customer queue
or the agent queue must be empty. The system state can
be described by three variables: X: ’the number of pend-
ing invited agents’. Y : ’the difference between agent and
customer queues’. Z: ’the number of customers (or agents)
in service’. Figure 1 depicts such an agent invitation system.

Figure 1: An Agent Invitation System

The feedback invitation scheme in [19], let us label it as
Scheme A, is defined as follows. The scheme maintains a
“target” Xtarget(t) for the number of invited agents X(t).
The targetXtarget(t) is changed by ∆Xtarget(t) = [−γ∆Y (t)−
εY (t)∆t] at each time t when Y (t) changes by ∆Y (t) (which
can be either +1 or −1), where γ > 0 and ε > 0 are the al-
gorithm parameters and ∆t is the time duration from the
previous change of Y . New agents are invited if and only
if X(t) < Xtarget(t), where X(t) is the actual number of
invited (pending) agents; therefore, X(t) ≥ Xtarget(t) holds
at all times. In addition, the target Xtarget(t) is not al-
lowed to go below zero, Xtarget(t) ≥ 0; i.e. if an update
of Xtarget(t) makes it negative, its value is immediately re-



set to zero. Note that Xtarget(t) is not necessarily an integer.

Although the scheme we consider is same as in [19], the
model we apply it to is different. Namely, arrivals into the
agent queue are not only due to invited agents accepting in-
vitations, but also due to agents returning immediately after
the service completions. As a result, the process describing
the system evolution contains additional variable Z, and is
more complicated.

To simplify our theoretical analysis, just as in [13], we con-
sider a “stylized” version of Scheme A, which has the same
basic dynamics, but keeps Xtarget(t) integer and assumes
that X(t) = Xtarget(t) at all times; the latter is equivalent
to assuming that not only agent invitations can be issued in-
stantly, but they can also be withdrawn at any time. Given
these assumptions, when pending agents decline invitations,
it has no impact on the system state, because X(t) is imme-
diately “replenished” by inviting another agent. Therefore,
in the analysis of stylized scheme, the events of declined in-
vitations can be ignored.

Formally, the stylized scheme, which we label Scheme B,
is defined as follows. There are four types of mutually in-
dependent, and independent of the past, events that affect
the dynamics of X(t), Y (t) and Z(t) in a small time interval
[t, t+dt]: (i) a customer arrival with probability Λdt+o(dt),
(ii) an agent acceptance with probability βX(t)dt + o(dt),
(iii) an additional event with probability ε|Y (t)|dt + o(dt),
and (iv) service completion with probability µZ(t)dt+o(dt).

The changes at these event times are described as follows:
(i) Upon a customer arrival, if Y (t) > 0, Z(t) changes by

∆Z(t) = 1; and if Y (t) ≤ 0, Z(t) changes by ∆Z(t) = 0.
Y (t) changes by ∆Y (t) = −1, and X(t) changes by ∆X(t) =
γ (we assume that γ > 0 is an integer).

(ii) Upon the acceptance of an invitation, if Y (t) < 0, Z(t)
changes by ∆Z(t) = 1; and if Y (t) ≥ 0, Z(t) changes by
∆Z(t) = 0. Y (t) changes by ∆Y (t) = 1, and X(t) changes
by ∆X(t) = −(γ ∧X(t)), that is, the change is by −γ but
X(t) is kept to be nonnegative.

(iii) Upon the third type of event, if X(t) ≥ 1, the change
∆X(t) = −sgn(Y (t)) occurs; and if X(t) = 0, the change
∆X(t) = 1 occurs if Y (t) < 0 and ∆X(t) = 0 if Y (t) ≥ 0.

(iv) Upon the service completion, (a) with probability α,
if Y (t) < 0, the change ∆Z(t) = −1 + 1 = 0 occurs; and if
Y (t) ≥ 0, the change ∆Z(t) = −1 occurs; Y (t) changes by
∆Y (t) = 1, and ∆X(t) = −(γ∧X(t)). (b) With probability
(1− α), Z(t) changes by ∆Z(t) = −1.

4. MAIN RESULTS
We consider a sequence of systems, indexed by a scal-

ing parameter r → ∞. In the system with index r, the
arrival rate is λr, while the parameters α, β, µ, ε, γ are
constant. The corresponding process is (Xr, Y r, Zr), where
Xr = (Xr(t), t ≥ 0), Y r = (Y r(t), t ≥ 0) and Zr =
(Zr(t), t ≥ 0). We will center the values of Xr, Y r, and Zr

by λr(1− α)/β, 0, and λr/µ, respectively. These values are
such that βXr + µαZr = λr, which means that on average
the arrival rate of agents into the agent queue matches the
rate of customer arrivals. We define fluid-scaled processes

with centering 
X̄r = 1

r

(
Xr − λr(1−α)

β

)
Ȳ r = 1

r
Y r

Z̄r = 1
r

(
Zr − λr

µ

)
.

(6)

Let W be the total number of customers and agents in the
system. We know that Y is the difference between agent and
customer queues (only one of those queues can be positive at
any time since we have the non-idling condition) and Z is the
number of customers (or agents) in service. From this, W =
|Y | + 2Z, which is equivalent to Z = 1

2
(W − |Y |). Instead

of using the process (X,Y, Z), we are using a new process
(X,Y,W ). This process (X,Y,W ) is more convenient for the
analysis. We have new fluid-scaled processes with centering

X̄r = 1
r

(
Xr − λr(1−α)

β

)
Ȳ r = 1

r
Y r

W̄ r = 1
r

(
W r − 2λr

µ

)
.

(7)

Theorem 1. Consider a sequence of processes (X̄r, Ȳ r, W̄ r),
r →∞, with deterministic initial states such that
(X̄r(0), Ȳ r(0), W̄ r(0)) → (x(0), y(0), w(0)) for some fixed

(x(0), y(0), w(0)) ∈ R3, x(0) ≥ −λ(1−α)
β

. Then, these pro-
cesses can be constructed on a common probability space, so
that the following holds. W.p.1, from any subsequence of r,
there exists a further subsequence such that

(X̄r, Ȳ r, W̄ r)→ (x, y, w) u.o.c. as r →∞ (8)

where (x, y, w) is a locally Lipschitz trajectory such that
at any regular point t ≥ 0

x′(t) =

{
−γy′(t)− εy, if x(t) > −λ(1−α)

β

[−γy′(t)− εy] ∨ 0, if x(t) = −λ(1−α)
β

y′(t) = βx+ 1
2
αµ(w − |y|)

w′(t) = βx+ 1
2
(α− 2)µ(w − |y|).

(9)

A limit trajectory (x, y, w) specified in Theorem 1 will be
called a fluid limit starting from (x(0), y(0), w(0)).

Consider a dynamic system (x(t), y(t), w(t)) ∈ R3:
x′(t) = −γy′(t)− εy
y′(t) = βx+ 1

2
αµ(w − |y|)

w′(t) = βx+ 1
2
(α− 2)µ(w − |y|).

(10)

Note that the RHS of (10) is continuous.

This dynamic system describes the dynamics of fluid limit
trajectories when the state is away from the boundary x =

−λ(1−α)
β

. The non-linear system (10) is a generalization of

the linear system, considered in [13]. The latter is a special
case of (10) without variable w, and with α = 0. The system
in [13] is simply linear, while (10) has two domains, defined
by the sign of y. The following results (in Theorem 2 and
3) provide sufficient exponential stability conditions for the
system (10).

Theorem 2. (Sufficient exponential stability condition).
For any set of positive β, µ, and α ∈ (0, 1), there exist values



of γ > 0 and ε > 0 satisfying the following condition


βγ2

4
< ε < βγ2

2

ε > βγ2

2
−
(
αγµ
2
− (1−α)µ2

2β

)
γ > (1−α)µ

αβ
.

(11)

For the parameters, satisfying this condition, common
quadratic Lyapunov function (CQLF) of the system (10) ex-
ists, and the system (10) is exponentially stable.

Theorem 3. (Sufficient exponential stability condition).
For any set of positive β, µ, and α ∈ (0, 1), there exist values
of γ > 0 and ε > 0 satisfying the following condition

{
ε < βγ2

2
− αγµ

2

γ > αµ
β
.

(12)

For the parameters, satisfying this condition, common
quadratic Lyapunov function (CQLF) of the system (10) ex-
ists, and the system (10) is exponentially stable.

We say that our fluid-limit system is globally stable if ev-
ery fluid limit trajectory converges to the equilibrium point
(0, 0, 0); we say that it is locally stable if every trajectory of
the dynamic system (10) converges to the equilibrium point
(0, 0, 0). Therefore, the conditions (11) and (12) are suffi-
cient for the local stability of our system. We also note that
condition (12) is more robust and is easier to achieve in prac-
tice. Indeed, for any given ε > 0, it holds for all sufficiently
large γ; how large, can be determined if some estimates of
other parameters are available.

5. FLUID SCALE ANALYSIS AND PROOF
OF THEOREM 1

In order to prove Theorem 1, it suffices to show that w.p.1
from any subsequence of r, we can choose a further subse-
quence, along which a u.o.c. convergence to a fluid limit
holds.

Given the initial state (Xr(0), Y r(0),W r(0)), we construct
the process (Xr, Y r,W r), for all r, on the same probability
space via a common set of independent Poisson process as
follows:

Xr(t) = Gr(t) +

(
− min

0≤s≤t
Gr(s)

)
∨ 0, (13)

Gr(t) = Xr(0) + γN1(λrt)− γN2

(
β

∫ t

0

Xr(s)ds

)
−

−γN4

(
αµ

∫ t

0

1

2
(W r(s)− |Y r(s)|)ds

)
+

+N5

(
ε

∫ t

0

(Y r(s))−ds

)
−N6

(
ε

∫ t

0

(Y r(s))+ds

)
, (14)

Y r(t) = Y r(0) +N2

(
β

∫ t

0

Xr(s)ds

)
+

+N4

(
αµ

∫ t

0

1

2
(W r(s)− |Y r(s)|)ds

)
−N1(λrt), (15)

W r(t) = W r(0) +N1(λrt) +N2

(∫ t

0

βXr(s)ds

)
−

−N3

(∫ t

0

2(1− α)µ
1

2
(W r(s)− |Y r(s)|)ds

)
−

−N4

(∫ t

0

αµ
1

2
(W r(s)− |Y r(s)|)ds

)
, (16)

and Ni(·), i = 1, . . . , 6 are mutually independent unit-
rate Poisson processes [14]. N1 is the process which drives
customer arrivals. N2 is the process which drives the ac-
ceptance of invitations. N3 is the process which drives the
service completions, with agents leaving the system. N4 is
the process which drives the service completions, with agents
coming back. N5 and N6 are the processes which drive the
third type of event. W.p.1, for any r, relations (13)-(16)
uniquely define the realization of (Xr, Y r,W r) via the re-
alizations of the driving processes Ni(·). Relation (13), the
“reflection” at zero, corresponds to the property that Xr(t)
cannot become negative.

The functional strong law of large numbers (FSLLN) holds
for each Poisson process Ni:

Ni(rt)

r
→ t , r →∞ , u.o.c., w.p.1. (17)

We consider the sequence of associated fluid-scaled pro-
cesses (X̄r, Ȳ r, W̄ r) as defined in (7). (Note that these pro-
cesses are centered.) Let a constant m > ‖(x(0), y(0), w(0)‖
be fixed. For each r, on the same probability space as
(X̄r, Ȳ r, W̄ r), let us define a modified fluid-scaled process
(X̄r

m, Ȳ
r
m, W̄

r
m). Let (X̄r

m, Ȳ
r
m, W̄

r
m) start from the same ini-

tial state as (X̄r, Ȳ r, W̄ r) , i.e., (X̄r
m(0), Ȳ rm(0), W̄ r

m(0)) =
(X̄r(0), Ȳ r(0), W̄ r(0)). The modified process (X̄r

m, Ȳ
r
m, W̄

r
m)

follows the same path as (X̄r, Ȳ r, W̄ r) until the first time
that ‖(X̄r(t), Ȳ r(t), W̄ r(t))‖ ≥ m. Denote this time by
τrm. We then freeze the process (X̄r

m, Ȳ
r
m, W̄

r
m) at the value

(X̄r(τrm), Ȳ r(τrm), W̄ r(τrm)), i.e. (X̄r
m(t), Ȳ rm(t), W̄ r

m(t)) =
(X̄r(τrm), Ȳ r(τrm), W̄ r(τrm)) for all t ≥ τrm.

Lemma 1. Fix (x(0), y(0), w(0)) and a finite constant m >
‖(x(0), y(0), w(0))‖. Then, w.p.1 for any subsequence of r,
there exists a further subsequence, along which (X̄r

m, Ȳ
r
m, W̄

r
m)

converges u.o.c. to a Lipschitz continuous trajectory
(xm, ym, wm), which satisfies properties (9) at any regular
time t ≥ 0 such that ‖(xm(t), ym(t), wm(t))‖ < m.

Proof. For the modified fluid-scaled processes (X̄r
m, Ȳ

r
m, W̄

r
m),

we define the associated counting processes for upward and



downward jumps. For t ≤ τrm,

X̄r↑
m (t) = r−1γN1(λrt) + r−1N5

(
εr

∫ t

0

(Ȳ rm(s))−ds

)
,

(18)

X̄r↓
m (t) = r−1γN2

(
βr

∫ t

0

[
X̄r
m(s) +

λ(1− α)

β

]
ds

)
+

+r−1γN4

(
1

2
αµr

∫ t

0

[
W̄ r
m(s) +

2λ

µ
− |Ȳ rm(s)|

]
ds

)
+

+r−1N6

(
εr

∫ t

0

(Ȳ rm(s))+ds

)
, (19)

Ȳ r↑m (t) = r−1N2

(
βr

∫ t

0

[
X̄r
m(s) +

λ(1− α)

β

]
ds

)
+

+r−1N4

(
1

2
αµr

∫ t

0

[
W̄ r
m(s) +

2λ

µ
− |Ȳ rm(s)|

]
ds

)
, (20)

Ȳ r↓m (t) = r−1N1(λrt), (21)

W̄ r↑
m (t) = r−1N1(λrt) + r−1N2

(
βr

∫ t

0

[
X̄r
m(s) +

λ(1− α)

β

]
ds

)
,

(22)

W̄ r↓
m (t) = r−1N3

(
(1− α)µr

∫ t

0

[
W̄ r
m(s) +

2λ

µ
− |Ȳ rm(s)|

]
ds

)
+

+r−1N4

(
1

2
αµr

∫ t

0

[
W̄ r
m(s) +

2λ

µ
− |Ȳ rm(s)|

]
ds

)
, (23)

and for t > τrm, all these counting processes are frozen at
their values at time τrm, that is,


X̄r↑
m (t) = X̄r↑

m (τrm) , X̄r↓
m (t) = X̄r↓

m (τrm) ,

Ȳ r↑m (t) = Ȳ r↑m (τrm) , Ȳ r↓m (t) = Ȳ r↓m (τrm) ,

W̄ r↑
m (t) = W̄ r↑

m (τrm) , W̄ r↓
m (t) = W̄ r↓

m (τrm).

(24)

Using the relations (13)-(16) and the fact that for 0 ≤
t ≤ τrm the original process (X̄r, Ȳ r, W̄ r) and the modified
process (X̄r

m, Ȳ
r
m, W̄

r
m) coincide, we have for all t ≥ 0,

X̄r
m(t) = Ḡrm(t) +

(
−λ(1− α)/β − min

0≤s≤t
Ḡrm(s)

)
∨ 0,

(25)

Ḡrm(t) = X̄r(0) + X̄r↑
m (t)− X̄r↓

m (t), (26)

Ȳ rm(t) = Ȳ r(0) + Ȳ r↑m (t)− Ȳ r↓m (t), (27)

W̄ r
m(t) = W̄ r(0) + W̄ r↑

m (t)− W̄ r↓
m (t). (28)

The counting processes X̄r↑
m , X̄r↓

m , Ȳ r↑m , Ȳ r↓m , W̄ r↑
m , W̄ r↓

m

are non-decreasing. Using the Functional Strong Law of
Large Number (FSLLN) (17) and the fact that the pro-
cesses X̄r

m, Ȳ rm, and W̄ r
m are uniformly bounded by con-

struction, we see that w.p.1. for any subsequence of r,
there exists a further subsequence along which the set of
trajectories (X̄r↑

m , X̄
r↓
m , Ȳ

r↑
m , Ȳ r↓m , W̄ r↑

m , W̄ r↓
m ) converges u.o.c.

to a set of non-decreasing Lipschitz continuous functions
(x↑m, x

↓
m, y

↑
m, y

↓
m, w

↑
m, w

↓
m). But then the u.o.c. convergence

of (X̄r
m, Ȳ

r
m, W̄

r
m, Ḡ

r
m) to a set of Lipschitz continuous func-

tions (xm, ym, wm, gm) holds, where

xm(t) = gm(t) +

(
−λ(1− α)/β − min

0≤s≤t
gm(s)

)
∨ 0, (29)

gm(t) = x(0) + x↑m(t)− x↓m(t), (30)

ym(t) = y(0) + y↑m(t)− y↓m(t), (31)

wm(t) = w(0) + w↑m(t)− w↓m(t), (32)

and the following holds for t before fluid trajectory hits
‖(xm(t), ym(t), wm(t))‖ = m

x↑m(t) = γλt+ ε

∫ t

0

y−m(s)ds, (33)

x↓m(t) = γβ

∫ t

0

(
xm(s) +

λ(1− α)

β

)
ds+

+
1

2
γαµ

∫ t

0

(
wm(s) +

2λ

µ
− |ym(s)|

)
ds+ ε

∫ t

0

y+m(s)ds,

(34)

y↑m(t) = β

∫ t

0

(
xm(s) +

λ(1− α)

β

)
ds+

+
1

2
αµ

∫ t

0

(
wm(s) +

2λ

µ
− |ym(s)|

)
ds, (35)

y↓m(t) = λt, (36)

w↑m(t) = λt+ β

∫ t

0

(
xm(s) +

λ(1− α)

β

)
ds, (37)

w↓m(t) = (1− α)µ

∫ t

0

(
wm(s) +

2λ

µ
− |ym(s)|

)
ds+

+
1

2
αµ

∫ t

0

(
wm(s) +

2λ

µ
− |ym(s)|

)
ds. (38)

It is easy to verify that, for t before fluid trajectory hits
‖(xm(t), ym(t), wm(t))‖ = m
x′m(t) =


−γβxm − 1

2
γαµwm + 1

2
γαµ|ym| − εym,

if xm(t) > −λ(1−α)
β

[−γβxm − 1
2
γαµwm + 1

2
γαµ|ym| − εym] ∨ 0,

if xm(t) = −λ(1−α)
β

y′m(t) = βxm + 1
2
αµ(wm − |ym|)

w′m(t) = βxm + 1
2
(α− 2)µ(wm − |ym|)

(39)

which is equivalent to
x′m(t) =

{
−γy′m(t)− εym, if xm(t) > −λ(1−α)

β

[−γy′m(t)− εym] ∨ 0, if xm(t) = −λ(1−α)
β

y′m(t) = βxm + 1
2
αµ(wm − |ym|)

w′m(t) = βxm + 1
2
(α− 2)µ(wm − |ym|).

(40)

This means properties (9) hold for the trajectory
(xm, ym, wm). This completes the proof. 2

Conclusion of the proof of Theorem 1. It is obvious that
d
dt
‖(xm(t), ym(t), wm(t))‖ ≤ C‖(xm(t), ym(t), wm(t))‖ holds

for any m, and some common C > 0. From Gronwall’s in-
equality [4], ‖(xm(t), ym(t), wm(t))‖ ≤ ‖(x(0), y(0), w(0))‖eCt
for t ≥ 0. For a given (x(0), y(0), w(0)), let us fix Tl > 0 and
choose ml > ‖(x(0), y(0), w(0)‖eCTl . For this Tl > 0, there



exists a subsequence rl, along which (X̄r, Ȳ r, W̄ r) converges
uniformly to (xml , yml , wml), which satisfies properties (9),
at any t ∈ [0, Tl]. The limit trajectory (xml , yml , wml) does
not hit ml in [0, Tl]. Subsequence rl = {rl1, rl2, . . . } is such
that, w.p.1, for all sufficiently large r along the subsequence
rl, (X̄r(t), Ȳ r(t), W̄ r(t)) = (X̄r

ml
(t), Ȳ rml

(t), W̄ r
ml

(t)) at any
t ∈ [0, Tl]. We consider a sequence T1, T2, . . . , → ∞. We
construct a subsequence r∗ by using Cantor’s diagonal pro-
cess [16] from subsequences r1, r2, . . . (r1 ⊇ r2 ⊇ . . . ) cor-
responding to T1, T2, . . . , respectively (i.e. r∗1 = r11, r∗2 = r22,
. . . ). Clearly, for this subsequence r∗, w.p.1, (X̄r, Ȳ r, W̄ r)
converges u.o.c. to (x, y, w), which satisfies properties (9),
at any regular point t ∈ [0,∞). 2

6. PROOF OF THEOREM 2
We use the machinery of switched linear systems and com-

mon quadratic Lyapunov functions (CQLF) to approach the
stability of fluid limits, i.e. their convergence to the unique
equilibrium point (0, 0, 0) [10, 18].

System (10) is a switched linear system with m = 2.
Namely, for y ≥ 0,

x′(t) = (−γβ)x+
(
1
2
γαµ− ε

)
y +

(
− 1

2
γαµ

)
w

y′(t) = (β)x+
(
− 1

2
αµ
)
y +

(
1
2
αµ
)
w

w′(t) = (β)x+
(
− 1

2
(α− 2)µ

)
y +

(
1
2
(α− 2)µ

)
w

(41)

and for y < 0,
x′(t) = (−γβ)x+

(
− 1

2
γαµ− ε

)
y +

(
− 1

2
γαµ

)
w

y′(t) = (β)x+
(
1
2
αµ
)
y +

(
1
2
αµ
)
w

w′(t) = (β)x+
(
1
2
(α− 2)µ

)
y +

(
1
2
(α− 2)µ

)
w.

(42)

We can rewrite the systems above as two linear time-
invariant systems u′(t) = A+u(t) and u′(t) = A−u(t),
where u(t) = (x(t), y(t), w(t))T and

A+ =

 −γβ 1
2
γαµ− ε − 1

2
γαµ

β − 1
2
αµ 1

2
αµ

β − 1
2
(α− 2)µ 1

2
(α− 2)µ

 (43)

and

A− =

 −γβ − 1
2
γαµ− ε − 1

2
γαµ

β 1
2
αµ 1

2
αµ

β 1
2
(α− 2)µ 1

2
(α− 2)µ

 . (44)

Lemma 2. Matrix A+ in (43) is Hurwitz for all positive
β, γ, µ, ε and α ∈ (0, 1).

Proof. The characteristic equation of A+ is det(A+ −
λI) = 0, which is equivalent to

λ3 + (βγ + µ)λ2 + (βε+ βγµ)λ+ βεµ = 0. (45)

By Proposition 3, it suffices to verify that

βγ + µ > 0 , βε+ βγµ > 0 , βεµ > 0, (46)

and

(βγ + µ)(βε+ βγµ)− βεµ = β2γ2µ+ β2γε+ βγµ2 > 0.
(47)

Conditions (46) and (47) are obviously true. 2

Lemma 3. Matrix A− in (44) is Hurwitz for positive β,
γ, µ, ε, and α ∈ (0, 1), satisfying(

βγ

µ
+ (1− α)

)(γµ
ε

+ 1
)
> 1. (48)

Proof. The characteristic equation of A− is det(A−− λI) =
0, which is equivalent to

λ3 + (βγ + µ(1− α))λ2 + (βε+ βγµ)λ+ βεµ = 0. (49)

By Proposition 3, it suffices to verify that

βγ + µ(1− α) > 0 , βε+ βγµ > 0 , βεµ > 0, (50)

and

(βγ + µ(1− α))(βε+ βγµ)− βεµ > 0 which is equivalent to(
βγ

µ
+ (1− α)

)(γµ
ε

+ 1
)
> 1.

Conditions (50) are obviously true. 2

Lemma 4. For β > 0, µ > 0 and α ∈ (0, 1), there exists
a pair of γ > 0 and ε > 0 satisfying condition

βγ2

4
< ε < βγ2

2

ε > βγ2

2
−
(
αγµ
2
− (1−α)µ2

2β

)
γ > (1−α)µ

αβ
.

(51)

Moreover, condition (51) implies matrix A− being Hur-
witz.

Proof. For β > 0, µ > 0 and α ∈ (0, 1), we have (1−α)µ
αβ

>
0. Hence, we can always find a value of γ > 0 satisfying
the third condition of (51). And from the third condition of
(51), we have

αγµ

2
− (1− α)µ2

2β
> 0. (52)

Hence, we can always find a value of ε > 0 satisfying{
βγ2

4
< ε < βγ2

2

ε > βγ2

2
−
(
αγµ
2
− (1−α)µ2

2β

)
.

(53)

As shown in the proof of Lemma 3, matrix A− when

(βγ + µ(1− α))(βε+ βγµ)− βεµ =

= β2γε+ βεµ(1− α) + β2γ2µ+ βγµ2(1− α)− βεµ > 0.

For positive β, γ, µ, ε, and α ∈ (0, 1), the condition
β2γ2µ − βεµ > 0 or, equivalently, ε < γ2β implies (48).
It means that, if ε < γ2β, then A− is Hurwitz. But, the
condition (51) implies ε < γ2β. 2

Conclusion of the proof of Theorem 2. The characteristic
equation of A+A− is

λ3 − (µ2 − αµ2 + β2γ2 − 2βε− αβγµ)λ2+

+(β2ε2 + β2γ2µ2 − 2βεµ2 + αβεµ2)λ− β2ε2µ2 = 0. (54)

(Expression (6) is obtained with the help of MATLAB
symbolic calculation.) By Proposition 4, if ∆ < 0, then
the equation has one real root and two nonreal complex
conjugate roots. It is well known that the determinant of a
square matrix A+A− is the product of its eigenvalues. We



have det(A+A−) = λ1λ2λ3 = β2ε2µ2 > 0. Therefore, one of
the roots must be a real positive. We see that it will suffice
to show that ∆ < 0 to demonstrate A+A− could have no
negative real eigenvalues. From (6), we have

a = 1

b = −(µ2 − αµ2 + β2γ2 − 2βε− αβγµ)

c = β2ε2 + β2γ2µ2 − 2βεµ2 + αβεµ2

d = −β2ε2µ2.

(55)

These a, b, c, and d are the coefficients of general cubic
equation (4). From (5), we have

∆ = 18bcd− 4b3d+ b2c2 − 4c3 − 27d2 =

= d((18c− 4b2)b− 27d) + c2(b2 − 4c). (56)

From (11), we have c = β2ε2 +βµ2(βγ2−2ε)+αβεµ2 > 0
(note that: βγ2 − 2ε > 0) and d < 0. Hence, to show that
∆ < 0 in equation (6), it will suffice to show{

b > 0

b2 − 4c < 0.
(57)

We will show that condition (11) implies (57). We have

b = (α− 1)µ2 − β2γ2 + 2βε+ αβγµ >

> (α− 1)µ2 − β2γ2 + αβγµ+ β2γ2 − αβγµ+ (1− α)µ2 = 0[
Note that ε >

βγ2

2
−
(
αγµ

2
− (1− α)µ2

2β

)]
,

and

b2 − 4c = α2β2γ2µ2 + 2α2βγµ3 + α2µ4 − 2αβ3γ3µ−
−2αβ2γ2µ2 + 4εαβ2γµ− 2αβγµ3 − 2αµ4+

+β4γ4 − 4εβ3γ2 − 2β2γ2µ2 + 4εβµ2 + µ4 =

= (α− 1)2µ4 + βµ2(α2βγ2 − 2αβγ2 − 2βγ2 + 4ε)+

+2αβγµ3(α− 1) + αβ2γµ(−2βγ2 + 4ε) + β3γ2(βγ2 − 4ε)
(a)
<

< (α− 1)2µ4 + βµ2(α2βγ2 − 2αβγ2 − 2βγ2 + 4ε)+

+2αβγµ3(α− 1) =

= (α− 1)µ3((α− 1)µ+ αβγ) + αβγµ3(α− 1)+

+βµ2(αβγ2(α− 2)− 2(βγ2 − 2ε))
(b)
<

< (α− 1)µ3((α− 1)µ+ αβγ).

(where in (a) and (b) we use the facts that βγ2

4
< ε <

βγ2

2
⇔ βγ2 − 4ε < 0 < βγ2 − 2ε).

From condition (11), we have (α−1)µ+αβγ > (α−1)µ+

(1 − α)µ = 0. Note that γ > (1−α)µ
αβ

⇔ αβγ > (1 − α)µ.

Therefore, we have b > 0 and b2 − 4c < 0. Hence, A+A−

has no negative real eigenvalues under condition (11).

By Lemma 2, A+ is Hurwitz for all positive β, γ, µ, ε and
α ∈ (0, 1). By Lemma 4, A− is Hurwitz under condition
(11). It is easy to verify that the difference A+ − A− has
rank one. A+A− has no negative real eigenvalues under con-
dition (11). Hence, by Proposition 2, u′(t) = A+u(t) and
u′(t) = A−u(t) have a CQLF. Therefore, by Proposition 1,
the system (10) is exponentially stable under condition (11).

This completes the proof. 2

As a useful corollary of Lemma 3, we have the following
fact.

Corollary 1. If matrix A− in (44) is Hurwitz for some
positive β, γ, µ, ε, and α ∈ (0, 1), then it remains Hurwitz
if α is replaced by any 0 < α0 ≤ α.

Proof. From (48), for any α0 ∈ (0, α], we have(
βγ

µ
+ (1− α0)

)(γµ
ε

+ 1
)
≥

≥
(
βγ

µ
+ (1− α)

)(γµ
ε

+ 1
)
> 1. (58)

Application of Lemma 3 completes the proof. 2

7. PROOF OF THEOREM 3
We also use the machinery of switched linear systems and

common quadratic Lyapunov functions (CQLF) to approach
the stability of fluid limits.

Lemma 5. For β > 0, µ > 0 and α ∈ (0, 1), there exists
a pair of γ > 0 and ε > 0 satisfying condition{

ε < βγ2

2
− αγµ

2

γ > αµ
β
.

(59)

Moreover, condition (59) implies matrix A− being Hur-
witz.

Proof. For β > 0, µ > 0 and α ∈ (0, 1), we have αµ
β
> 0.

Hence, we can always find a value of γ > 0 satisfying the
second condition of (59). And from the second condition of
(59), we have

βγ2

2
− αγµ

2
> 0. (60)

Hence, we can always find a value of ε > 0 satisfying the
first condition of (59). By Lemma 3, condition (59) imply
matrix A− being Hurwitz. 2

Conclusion of the proof of Theorem 3. From the help of
MATLAB symbolic calculation, we have

(A+)−1 =

 0 − (α−2)
2β

α
2β

− 1
ε

− γ
ε

0

− 1
ε

(ε−γµ)
εµ

− 1
µ

 (61)

and

det
(
(A+)−1) = − 1

βεµ
< 0. (62)

Therefore, matrix (A+)−1 is non-singular. By Proposition
5, to demonstrate that the product A+A− has no negative
eigenvalues under condition (12), it will suffice to show that
[(A+)−1 + τA−] is non-singular for all τ ≥ 0. We have

det[(A+)−1 + τA−] =

= −[β2ε2µ2τ3 + (β2ε2 + β2γ2µ2 − 2βεµ2 + αβεµ2)τ2+

+(µ2 − αµ2 + β2γ2 − 2βε− αβγµ)τ + 1]/(βεµ) (63)

(Expression (63) is also obtained with the help of MAT-
LAB symbolic calculation.) To show det[(A+)−1+τA−] 6= 0



for all τ ≥ 0, it will suffice to show numerator of the fraction
(63) is not equal to 0. For all τ ≥ 0, we have

β2ε2µ2τ3 + (β2ε2 + β2γ2µ2 − 2βεµ2 + αβεµ2)τ2+

+(µ2 − αµ2 + β2γ2 − 2βε− αβγµ)τ + 1 >

> (β2ε2 + (β2γ2 − 2βε)µ2 + αβεµ2)τ2+

+((1− α)µ2 + β2γ2 − 2βε− αβγµ)τ > 0

[Note that ε <
βγ2

2
− αγµ

2
⇔ β2γ2 − 2βε− αβγµ > 0

⇒ β2γ2 − 2βε > 0].

This implies that A+A− has no negative eigenvalues under
condition (12). Hence, u′(t) = A+u(t) and u′(t) = A−u(t)
have a CQLF. Therefore, the system (10) is exponentially
stable under condition (12). This completes the proof. 2

8. NUMERICAL EXAMPLES
In this section, we present some numerical examples to

show the good performance of the scheme. Later, we also
provide some conjectures based on a variety of simulations.

Example 1. We use the following set of parameters, which
satisfies the condition (11) but does not satisfy the condition
(12):

Λ = 1000, α = 0.7, β = 1, µ = 1, γ = 2, ε = 1.5.

(a) (X(0), Y (0), Z(0)) =
(0, 0, 0)

(b) (X(0), Y (0), Z(0)) =
(0,−1000, 0)

Figure 2: Comparison of fluid approximations with simula-
tions in Example 1

We consider two initial conditions: (a) (X(0), Y (0), Z(0)) =
(0, 0, 0); (b) (X(0), Y (0), Z(0)) = (0,−1000, 0) (Figure 2).
The red line of the figure is the fluid approximation and the
blue line of the figure is the simulation experiment. We also
did the numerical/simulation experiments with 10 different
initial conditions of this set. The results, including those
not shown on Figure 2, suggest the global stability of our
system.

Example 2. Let us consider a case when trajectory hits
the boundary on x. We consider the following set of param-
eters, which satisfies the condition (11) but does not satisfy
the condition (12):

Λ = 1000, α = 0.5, β = 3, µ = 2, γ = 1, ε = 1.4.

We consider two initial conditions: (a) (X(0), Y (0), Z(0)) =
(2000, 0, 1000); (b) (X(0), Y (0), Z(0)) = (0, 2000, 0) (Figure
3). We also did the numerical/simulation experiments with

(a) (X(0), Y (0), Z(0)) =
(2000, 0, 1000)

(b) (X(0), Y (0), Z(0)) =
(0, 2000, 0)

Figure 3: Comparison of fluid approximations with simula-
tions in Example 2

10 different initial conditions of this set. The results, includ-
ing those not shown on Figure 3, suggest the global stability
of our system even though sometimes the trajectory hits the
boundary on x.

Example 3. We use 4 sets of parameters (with different
values of α), which do not satisfy the condition (11) but
satisfy the condition (12):

Λ = 1000, β = 1, µ = 2, γ = 2, ε = 0.19.

(a) α1 = 0.1 (b) α2 = 0.4

(c) α3 = 0.6 (d) α4 = 0.9

Figure 4: Comparison of fluid approximations with simula-
tions in Example 3

We consider an initial condition (X(0), Y (0), Z(0)) =
(0, 1000, 500) with 4 different values of α (α1 = 0.1, α2 =
0.4, α3 = 0.6, and α4 = 0.9) (Figure 4). We also did the nu-
merical/simulation experiments with 5 different initial con-
ditions for each of the 4 values of α. The results, including
those not shown on Figure 4, suggest the global stability of
our system even though sometimes the trajectory hits the
boundary on x.

Besides these three examples, we also ran the numeri-
cal/simulation experiments with another 5 sets of param-
eters as well as many other different initial conditions of



these sets, which satisfy either the condition (11) or (12).
All these results still suggest the global stability of our sys-
tem even though sometimes the trajectory hits the boundary
on x.

Example 4. In this example, we use a set of parameters,
which satisfies neither the condition (11) nor (12), but A−

is Hurwitz:

Λ = 1000, α = 0.5, β = 1, µ = 2, γ = 2, ε = 3.

(a) (X(0), Y (0), Z(0)) =
(0, 1000, 500)

(b) (X(0), Y (0), Z(0)) =
(0,−1000, 0)

Figure 5: Comparison of fluid approximations with simula-
tions in Example 4

We consider two initial conditions: (a) (X(0), Y (0), Z(0)) =
(0, 1000, 500); (b) (X(0), Y (0), Z(0)) = (0,−1000, 0) (Figure
5). Besides this example, we also did the numerical/simulation
experiments with 5 sets of parameters as well as many other
different initial conditions of these sets, which satisfy nei-
ther the condition (11) nor (12), but A− is Hurwitz. All
these results, including those not shown on Figure 5, sug-
gest the local and global stability of our system even though
sometimes the trajectory hits the boundary on x.

Example 5. Let us consider the case when A− is not
Hurwitz. We use the following two sets of parameters:

(a) Λ = 1000, α = 0.5, β = 0.05, µ = 0.5, γ = 1, ε = 1,

and

(b) Λ = 1000, α = 0.9, β = 0.05, µ = 0.5, γ = 1, ε = 1.

(a) α = 0.5 (b) α = 0.9

Figure 6: Comparison of fluid approximations with simula-
tions in Example 5

The only difference between these two sets is the parame-
ter α. We consider an initial condition (X(0), Y (0), Z(0)) =
(500, 1000, 500) (Figure 5). We see a converging trajectory
on the Figure 6a (on the left); in fact, we see convergence
for a large number of other initial conditions, for the same

set of parameters. Figure 6b shows a trajectory that never
converges, under a different set of parameters.

The results of Examples 1, 2 and 3 suggest that our system
is globally stable under either the condition (11) or (12).
The results of Example 4 suggest that our system is locally
and globally stable when A− is Hurwitz even if neither the
condition (11) nor (12) is satisfied. The results of Example
5 suggest that our system might be globally stable under
some sets of parameters, but unstable under some different
sets of parameters, when A− is not Hurwitz. The summary
of our conjectures, motivated by the numerical/simulation
experiments, is as follows:

Conjecture 1. Our system is globally stable if it is lo-
cally stable.

Conjecture 2. Matrix A− being Hurwitz is sufficient
for local stability of our system. (A+ is always Hurwitz in
our case.)

Conjecture 3. If A− is not Hurwitz, the system may
be locally stable or locally unstable depending on the param-
eters.

9. CONCLUSIONS
In this paper, we study a feedback-based agent invitation

scheme for a model with randomly behaving agents. This
model is motivated by a variety of existing and emerging
applications. The focus of the paper is on the stability prop-
erties of the system fluid limits, arising as asymptotic limits
of the system process, when the system scale (customer ar-
rival rate) grows to infinity. The dynamic system, describing
the behavior of fluid limit trajectories has a very complex
structure – it is a switched linear system, which in addi-
tion has a reflecting boundary. We derived some sufficient
local stability conditions, using the machinery of switched
linear systems and common quadratic Lyapunov functions.
Our simulation and numerical experiments show good over-
all performance of the feedback scheme, when the local sta-
bility conditions hold. They also suggest that, for our model,
the local stability is in fact sufficient for the global stabil-
ity of fluid limits. Verifying these conjectures, as well as
expanding the sufficient local stability conditions, is an in-
teresting subject for future research. Further generalizations
of the agent invitation model are also of interest from both
theoretical and practical points of view.
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